1) (18a-3a²)/(8a²-48a)=3a(6-a)/8a(a-6)=3a(-1)(a-6)/8a(a-6)=-3/8
2) (8p-40)/(15-3p)=8(p-5)/3(5-p)=8(-1)(5-p)/3(5-p)=-8/3
3) (4-x²)/(10-5x)=(2-x)(2+x)/5(2-x)=(2+x)/5=2/5+x/5=0.4+0.2x
4) (3x+6y)²/(5x+10y)=9(x+2y)²/5(x+2y)=9(x+2y)/5=1.8(x+2y)=1.8x+3.6y
5) (ax+bx-ay-by)/(bx-by)=(x(a+b)-y(a+b))/b(x-y)=(a+b)(x-y)/b(x-y)=(a+b)/b=a/b+1
6) (a²-6a+9)/(27-a³)=(a-3)²/(3-a)(9+3a+a²)=(a-3)²/(-1)(a-3)(9+3a+a²)= =(3-a)/(9+3a+a²)
7) (2a-2b)²/(a-b)=4(a-b)²/(a-b)=4(a-b)=4a-4b
8) (4c+12d)²/(c+3d)=16(c+3d)²/(c+3d)=16(c+3d)=16c+48d
9) (4x²-y²)/(6x-3y)²=(2x-3y)(2x+3y)/9(2x-y)²=(2x+y)/9(2x-y)
10) (ab-3b-2a+6)/(15-5a)=(b(a-3)-2(a-3))/5(3-a)=(a-3)(b-2)/5(3-a)= =(a-3)(b-2)/5(-1)(a-3)=(2-b)/5
Объяснение:
1,5 • 2⁴ - 3² = 15
1)2⁴ = 16
2)3² = 9
4)1,5 • 16 = 24
5)24 - 9 = 15
Предоставьте в виде степени выражения :
1)а7 • а4=а7+4=11
2)а7 : а4=а7-4 =а3
3)(а7)4=а7•4=а28
Преобразуйте выражения в одночлен стандартного вида :
1)-
2)-64а(в 6 степени)b( в 18 степени)
Предоставьте в виде многочлена стандартного вида выражения :
5А²-2А-3)-(2А²+2А-5)=
=5А²-2А-3-2А²-2А+5=
=3А²-4А+2
Упростить выражения :
81х5у
81х5=405
405у
Вместо звёздочки запишите такой многочлен чтобы образовалось тождество :
5х² -3ху -у²) - (4х²-у²)=5х² -3ху -у² -4х²+у²=х² -3ху
Докажите что значение выражения (14n+19)-(8n-5) кратко 6 при любом натуральном значении n :
14n+19)-(8n-5)= 6n+24 = 6*(n+8) - кратно 6.
Известно что 4а3b=-5 найдите значения выражения :
1) Преобразуем выражение следующим образом:
-8a^3b = -2 * 4a^3b;
Подставим заданное значение 4a^3b = -5 в преобразованное выражение.
Если 4a^3b = -5, тогда -2 * 4a^3b = -2 * (-5) = 10;
2) Преобразуем выражение следующим образом:
4a^6b^2 = 4 * (a^3b) ^ 2;
Найдем из заданного равенства 4a^3b = -5 значение a^3b;
a^3b = -5 : 4;
a^3b = -5/4;
Подставим найденное значение a^3b = -1,25 в преобразованное выражение.
Если a^3b = -5/4, тогда 4 * (a^3b) ^ 2 = 4 * (-5/4) ^ 2 = 4 * 25/16 = 25/4 = 6,25;