Пусть A - событие, что в сумме выпадет 7 очков;
n - общее количество исходов;
m - количество благоприятствующих событию A исходов;
n = 6 · 6 · 6 = 216;
Варианты, при которых в сумме получится 7 очков:
1 + 1 + 5; 1 + 2 + 4; 1 + 3 + 3; 1 + 4 + 2; 1 + 5 + 1; 2 + 1 + 4; 2 + 2 + 3; 2 + 3 + 2; 2 + 4 + 1; 3 + 1 + 3; 3 + 2 + 2; 3 + 3 + 1; 4 + 1 + 2; 4 + 2 + 1; 5 + 1 + 1.
Получилось 15 комбинаций m = 15;
Вероятность события A:
P(A) = m/n = 15/216 = 0,07.
ответ: Вероятность, что суммарно получится 7 очков P(A) = 0,07.
1)=8а²(в²-9с²)=8а²(в-3с)(в+3с).
2)=2(х²-12ху+36у²)=2(х-6у)².
3)=-2а(4а4-4а²+1)= -2а(2а²-1)².
4)=5(а³-8в6)=5(а³-(2в²)³)=5(а-2в²)(а²+2ав²+4в4)
5)=(а³+а²)-(ав-а²в)=а²(а+1)-ав(1+а)=(а+1)(а²-ав)=а(а+1)(а-в)
6)=с4(а-1)-с²(а-1)=(а-1)(с4-с²)=с²(а-1)(с²-1)=с²(а-1)(с-1)(с+1).
1)=(х-у)²-7²=(х-у-7)(х-у+7)
2)=а²-(3в-с)²=(а+3в-с)(а-3в+с)
3)=(в³)²-(2в²-3)²=(в³+2в²-3)(в³-2в²+3).
4)=(m³+3³n³)+(m+3n)²=(m+3n)(m²-3mn+9n²)+(m+3n)²=(m+3n)(m²-3mn+9n²+m+3n).
5)=x²-y²+2x+4y-3=(x²+2x+1)-(y²-4y+4)=(x+1)²-(y-2)²=(x+y-1)(x-y+3).
Объяснение:
1) а=5 logₐ5=1; logₐ1/5=logₐ5⁻¹ = -1; logₐ√5=logₐ5¹/²=1/2
2) а=2 logₐ64 =logₐ2⁶=6; logₐ1/8=logₐ2⁻³= -3; logₐ128=logₐ2⁷=7
3) а=7 logₐ7=1; logₐ1/7= -1; logₐ49=2
4) а=2 logₐ2²=2; logₐ1/16=logₐ2⁻⁴= -4; logₐ1/64=logₐ2⁻⁶= -6