Знаменатель дроби показывает на сколько ровных долей делят, а числитель-сколько таких долей взято.. Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем) Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь. Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2 незнаю, наверное до бесконечности Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Знаменатель дроби показывает на сколько ровных долей делят, а числитель-сколько таких долей взято.. Чтобы прибавить, или отнять дроби с разными знаменателями, мы приводим к наименьшему общему знаменателю, и прибавляем(или отнимаем) Если числитель и знаменатель дроби умножить или разделить на одно и тоже натуральное число, то получится равная ей дробь. Это значит разделить и числитель и знаменатель на одно и то же число, не равное нулю. Например дробь 2/4 сокращаем на два:1/2.5/10 сокращаем на 5=1/2 незнаю, наверное до бесконечности Дробь называют несократимой тогда, когда сократить эту дробь невозможно...
Давайте начнем решение (4x - 3)(3 + 4x) - 2x(8x - 1) = 0 уравнения с открытия скобок в левой части уравнения.
Применим для этого формулу сокращенного умножения:
(n - m)(n + m) = n2 - m2;
А для открытия второй скобке применим правило умножения одночлена на многочлен:
(4x - 3)(4x + 3) - 2x(8x - 1) = 0;
16x2 - 9 - 2x * 8x + 2x * 1 = 0;
16x2 - 9 - 16x2 + 2x = 0;
16x2 - 16x2 + 2x - 9 = 0;
Перенесем -9 в правую часть уравнения и сменим знак при этом:
2x = 9;
Делим на 2 обе части уравнения:
x = 9 : 2;
Вроде всё:)
x = 4.5.