М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
XxXxXxXxXxX518
XxXxXxXxXxX518
27.07.2021 08:16 •  Алгебра

Решите уравнение sinx+4cosx=-4​

👇
Ответ:
Лиза090401
Лиза090401
27.07.2021

\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]

Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:  

 \[\frac{sin x * cos x}{16}  = 0\]

Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):

 \[2sin x * cos x  = 0\]

По формулам тригонометрии мы знаем, что:  

 \[2sin x * cos x  = sin 2x\]

Запишем наше красивое уравнение:  

 \[sin 2x = 0\]

А теперь его решим.

Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:  

 \[sin x = a\]

 

 \[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

 \[sin 2x = 0\]

Но у нас будет не просто х, а двойной:  

 \[2x =  (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]

Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

 \[sin 2x = 0 \]

 

 \[2x = \pi k, k \in \mathbb{Z}\]

Чтоб найти х надо каждый член поделить на два и из этого получим следующее:

 \[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]

ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}

4,6(6 оценок)
Открыть все ответы
Ответ:
Fluttys
Fluttys
27.07.2021
Б) f(x)=4-2x
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2

в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
4,5(69 оценок)
Ответ:
hjhffff
hjhffff
27.07.2021
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: D= b^2-4ac (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена

3x^2-x-2=0\\
D=1^2-4\cdot3\cdot(-2)=1+24=25; \ D\ \textgreater \ 0

Дискриминант больше нуля - два корня

16x^2+8x+1=0\\
D=8^2-4\cdot 16\cdot1=64-64=0

Дискриминант равен нулю. В уравнении 1 корень

x^2+6x+10=0\\
D=36-40=-4; D\ \textless \ 0

Дискриминант меньше нуля, значит нет действительных корней

2) y= \frac{ \sqrt{x+3} }{x^2+x}

Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.

x^2+x \neq 0\\
x(x+1) \neq 0\\
x_1 \neq 0\\\\
x+1 \neq 0\\
x_2 \neq -1

В нашем случае функция не имеет смысла, при х=-1 и х=0
4,5(76 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ