1)Найдём длину и уравнение медианы BM. Поскольку BM - медиана, то M - середина стороны AC. Воспользуемся формулой для вычисления координат середины отрезка, поскольк мы знаем координаты его концов(отрезок AC):
x = (x1 + x2) / 2 = 5 + 0 / 2 = 2.5
y = (y1 + y2) / 2 = (-6 + 10) / 2 = 2
Таким образом, M(2.5;2)
Теперь, зная координаты точки B и координаты точки M по формуле найдём длину отрезка BM:
|BM| = √(x-x₀)²+(y-y₀)², где x,y - абсцисса и ордината конца отрезка, x₀,y₀ - абсцисса и ордината начала отрезка. Подставим и вычислим:
|BM| = √(2.5+3)²+(2 - 4)² = √(30.25 + 4) = √34.25 (советую проверить потом, верно ли я везде посчитал, так как в спешке всё делаю, но сама суть думаю, ясна).
Теперь нужно найти уравнение медианы: искать будем его в общем виде y = kx + b(нужно найти k и b). Учитывая тот факт, что раз прямая проходит через точки B и M, её координаты должны удовлетворять формуле. Подставим координаты обоих точек в общее уравнение и составим и решим систему:
4 = -3k + b 3k - b = -4 5.5k = -2 k = -2/5.5
2 = 2.5k + b 2.5k + b = 2 3k - b = 4 b = 3k - 4 = -6/5.5 - 4 (ну вот, где-то точно в вычислениях ошибся)
b = -28/5.5(так вроде посчитал).
Теперь подставим k и b в общий вид, и получим то, что хотели, то есть уравнение медианы:
y = -2/5.5 k - 28/5.5 (коэффициенты получились не самые хорошие, это может быть связано как с вычислительной ошибкой, так и с самим условием, хотя всё проверял, по идее всё верно подсчитано должно быть)
2)Длину высоты CH найти ещё проще. Совместим точку H с началом координат. Тогда получим, что координаты точки H(0;0), а точки C(0;10). Найдём длину отрезка CH:его длина равна 10(можно по предыдущей формуле, а можно догадаться, что разница между координатами этих точек равна 10)
Во-первых, если функция имеет неустранимый разрыв 2 рода, то она не ограничена.
Например, дроби при знаменателе, равном 0, или логарифм при числе меньше 0.
Если таких разрывов нет, тогда второй шаг.
Нужно проверить её пределы на +oo и - oo.
Если lim(x->-oo) y(x) = a (какому-то числу), то функция y(x) ограничена снизу.
Если lim(x->+oo) y(x) = a, то функция ограничена сверху.
Если оба предела равны oo, тогда смотрим на знаки.
Если lim(x->-oo) y(x) = lim(x->+oo) y(x) = +oo, то функция ограничена снизу.
Например, парабола y=ax^2+bx+c при а > 0.
Если наоборот, оба предела равны -oo, то функция ограничена сверху.
Например, та же парабола при а < 0.
В обоих случаях парабола ограничена в своей вершине.
И, наконец, если разрывов нет и пределы равны oo с разными знаками, то функция не ограничена.
(b-5)^2 = b^2 - 10b + 25
2) (4a+c)^2 = 16a^2 + 8ac + c^2
3) (6x-y) (6x+y) = 36х^2 + 6ху - 6ху - у^2 = 36х^2 - у^2
4) = p^4 - q^2
^ - cтепень