1210
Объяснение:
Двухзначные числа, которые делятся на 4 с остатком 1 — это числа, которые делятся на 4 и ещё мы к ним добавляем 1 (13, 17, 21 и т.д.)
всего таких чисел 22. Самое первое число — 13, последнее — 97. И тут мы воспользуемся методом Гауса. Это метод, когда пары чисел с конца и с начала дают одно и тоже число. и тогда можно просто поделить на 2 количество чисел, посчитать количество пар и умножить их количество на сумму первого и последнего числа.
Вернёмся к задаче. Так как 97+13=110, а пар у нас 22:2=11, то достаточно умножить 110 на 11. Это будет 1210. Вот и ответ!
НЕТ НЕ ВЕРНО
|a + b| ≤ |a| + |b| это ВЕРНО
Существует 4 варианта знаков + и - для чисел a и b
1 вариант
Если a > 0 и b > 0
их модули совпадают с их значениями: |a| = a, |b| = b
Из этого следует, что |a + b| = |a| + |b|
2 вариант
Если a < 0 и b > 0
выражение |a + b| можно записать как |b – a|
А выражение |a| + |b| равно сумме абсолютных значений a и b, что больше, чем |b – a|
3 вариант (похож на 2 вариант)
Если a > 0 и b < 0 |a + b|
выражение |a + b| принимает вид |a – b|
А выражение |a| + |b| равно сумме абсолютных значений a и b что также больше чем |a - b|
Поэтому |a + b| < |a| + |b|
4 вариант
Если a < 0 и b < 0
тогда |a + b| = |–a – b| = |-(a + b)|
Но в варианте 1 доказано, что |a + b| = |a| + |b|, следовательно и |–a – b| = |a| + |b|
значит |a + b| ≤ |a| + |b| в зависимости от знаков a и b
а вот |ab| = |a|*|b|