Решение начнем с того, что перенесем все члены уравнения в одну сторону:
sin^2 (3x) = cos^2 (3x) – 1
cos^2 (3x) – sin^2 (3x) – 1 = 0.
Обратим внимание на разницу первых двух членов. Эту разницу можно свернуть в более короткую и удобную форму по формуле косинуса двойного угла, которая записывается следующим образом:
cos (2x) = cos^2 (x) – sin^2 (x).
В качестве аргумента в нашем случае выступает аргумент 3х. Запишем уравнение, свернув разницу первых двух членов по выше упомянутой формуле:
cos (2 * 3x) – 1 = 0
cos (6x) – 1 = 0.
Перепишем полученное уравнение в более удобной форме:
cos (6x) = 1.
Решим полученное тригонометрической уравнение любым из доступных Если косинус от любого аргумента равен единице, то аргумент этой функции равен 2 * пи * n. В данном случае аргумент косинуса равен 6х:
6x = 2 * пи * n.
Осталось вычислить значение переменной х. для этого разделим обе части уравнения на 6:
x = (пи * n ) / 3
x = пи / 3 * n.
ответ. x = пи / 3 * n, n – любое целое число.
Объяснение:
f'x = (ctg(x^2 × y))' = -1/(sin^2 (x^2 × y)) × (x^2×y)' = -1/(sin^2 (x^2 × y)) × 2 × x × y = - (2×x×y) / (sin^2 (x^2 × y))
f'y = ctg(x^2 × y))' = -1/(sin^2 (x^2 × y)) × (x^2×y)' = -1/(sin^2 (x^2 × y)) × x^2 = -(x^2) / (sin^2 (x^2 × y))
f"xx = ( -(2×x×y) / (sin^2 (x^2 × y)) )' = - (2×x×y)' × 1/ (sin^2 (x^2 × y)) - (2×x×y) × (1/(sin^2 (x^2 × y)))' = - (2×y) / (sin^2 (x^2 × y)) - (2×x×y) × ( -2/(sin^3 (x^2 ×y)) ) × cos(x^2 × y) × 2 × x × y = - (2×y) / (sin^2 (x^2 × y)) + (8×x^2×y^2) × (1/(sin^3 (x^2 ×y)) ) × cos(x^2 × y) = - (2×y) / (sin^2 (x^2 × y)) + ( 8×x^2×y^2 × cos(x^2 × y) ) / (sin^3 (x^2 ×y))
f"yy = (-(x^2) / (sin^2 (x^2 × y)))' = -(x^2) × (-2) × (sin^(-3) (x^2 × y)) × cos (x^2 × y) × x^2 = ( 2 × x^4 × cos (x^2 × y) ) / (sin^3 (x^2 × y))
f"xy = f"yx = - (2×x) / (sin^2 (x^2 × y)) - (2×x×y) / (sin^3 (x^2 × y)) × (-2 × cos(x^2×y) × x^2) = - (2×x) / (sin^2 (x^2 × y)) + 4 (x^3 × y × cos(x^2×y)) / (sin^3 (x^2 × y))
Вот ответ на первое задание