1)Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной величине отрицательного показателя: а – n = ( 1 / an )
2)Степень любого ненулевого числа с нулевым показателем равна 1:
a^0 = 1
Например: 2^0 = 1, (-5)^0 = 1, (3 / 5)^0 = 1
3)При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n ,
где «a» — любое число, а «m», «n» — любые натуральные числа.
Пример:
b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
Исходная матрица имеет вид:
1 2 0
2 4 0
0 0 0
Объяснение:
Составляем систему для определения координат собственных векторов:
(1 - λ)x1 + 2x2 + 0x3 = 0
2x1 + (4 - λ)x2 + 0x3 = 0
0x1 + 0x2 + (0 - λ)x3 = 0
Составляем характеристическое уравнение и решаем его.
1 - λ 2 0
2 4 - λ 0
0 0 0 - λ
Для этого находим определитель матрицы и приравниваем полученное выражение к нулю.
(1 - λ) • ((4 - λ) • (0 - λ)-0 • 0)-2 • (2 • (0 - λ)-0 • 0)+0 • (2 • 0-(4 - λ) • 0) = 0
После преобразований, получаем:
5*λ2-λ3 = 0
λ1 = 0
Подставляя λ1 = 0 в систему, имеем:
1 - 0 2 0
2 4 - 0 0
0 0 0 - 0
или
1 2 0
2 4 0
0 0 0