1)Все жители не могут быть лгунами, иначе каждый из них сказал бы правду(противоречит условию).
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
Чтобы число делилось на 5, оно должно заканчиваться на 0 или 5
рассмотрим те числа, которые заканчиваются на 0 тогда при условии: каждое число не должно содержать одинаковых цифр составляем числа: на первом месте может стоять любая из цифр 1,5,8,9 - 4 варианта на втором месте - любая из оставшихся ТРЕХ, (одну забрали на первое место) - 3 варианта на третьем месте стоит 0 Всего таких чисел 4*3*1=12
рассмотрим те числа, которые заканчиваются на 5 тогда на первое место мы выберем любое из 1,8,9 (0 на первом месте стоять не может) на второе место выберем из оставшихся двух и 0- всего 3 варианта значит чисел всего 3*3*1=9
4а в квадрете минус b в квадрате - разность квадратов, раскладываем, в знаменателе выносим 5, сокращаем и получаем ответ 2 а + b/5