Первую ещё не придумала, а вот вторая:
Чтобы найти вероятность того, что точка,брошенная в круг, попадёт в треугольник, надо найти отношение площади правильного треугольника к площади окружности
S(треуг)=(а:2*корень(3))/ S 4
S(окруж)=Pі *r^2
Мы знаем связь между стороной правильного треугольника и радиусом описаной окружности:
r=a/корень3
Тогда, вероятность = S(треуг)/ S(окруж)= ((а:2*корень(3))/ S 4) / (Pі *r^2) = ((а:2*корень(3))/ S 4) * (Pі *а^2) /3=(3*корень3)/ 4Pі
Если надо, можно примерно вищитать:
(3*корень3)/ 4Pі = 3*1,73/4*3,14=5,19/12,56=0,41
ответ:0,41
1) Повторяется цифра 1. Это 4 варианта:
11ххх, 1х1хх, 1хх1х, 1ххх1.
В каждом варианте вместо первой х можно поставить любую цифру из 9:
0, 2, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую их 8 оставшихся, вместо третьей х - любую из 7.
Всего 4*9*8*7 = 2016 вариантов.
2) Повторяется цифра 0. Это 6 вариантов:
100хх, 10х0х, 10хх0, 1х00х, 1х0х0, 1хх00.
В каждом варианте вместо первой х можно поставить любую из 8 цифр
2, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую из оставшихся 7 цифр.
Всего 6*8*7 = 336 вариантов.
3) Повторяется цифра 2. Это 6 вариантов:
122хх, 12х2х, 12хх2, 1х22х, 1х2х2, 1хх22.
В каждом варианте вместо первой х можно поставить любую из 8 цифр
0, 3, 4, 5, 6, 7, 8, 9.
Вместо второй х - любую из оставшихся 7 цифр.
Всего 6*8*7 = 336 вариантов.
4 - 10) Повторяются цифры 3 - 9. Это каждый раз по 336 вариантов.
Всего получается 2016 + 9*336 = 2016 + 3024 = 5040 вариантов.