1) 4sin х=3 -> sinx=3/4 ->x=(-1)^k *arcsin 3/4 +pi*k
2)2cos3х=√3 ->cos3x=√3/2 ->3x=плюс минус pi/6 + 2pi*k -> x=плюс минус pi/18+2pi*k /3
3) 2 sin(3x-п/6)=- √3 -> 3x-pi/6 = (-1)^(k+1) * pi/3 + pi*k ->x=((-1)^(k+1) * pi)/18 +pi/18 + pi*k /3
4)arsin и arsin (-1\3)
arsin и -arsin 1\3 -> arsin > -arsin 1\3
5) cos2x= -√3 /2 -> 2x=плюс минус 5pi/6 + 2pi*k -> x= плюс минус 5pi/12 + pi*k
Подставляйте целые числа k и смотрите,какие Х подходят в промежуток
1) 4sin х=3 -> sinx=3/4 ->x=(-1)^k *arcsin 3/4 +pi*k
2)2cos3х=√3 ->cos3x=√3/2 ->3x=плюс минус pi/6 + 2pi*k -> x=плюс минус pi/18+2pi*k /3
3) 2 sin(3x-п/6)=- √3 -> 3x-pi/6 = (-1)^(k+1) * pi/3 + pi*k ->x=((-1)^(k+1) * pi)/18 +pi/18 + pi*k /3
4)arsin и arsin (-1\3)
arsin и -arsin 1\3 -> arsin > -arsin 1\3
5) cos2x= -√3 /2 -> 2x=плюс минус 5pi/6 + 2pi*k -> x= плюс минус 5pi/12 + pi*k
Подставляйте целые числа k и смотрите,какие Х подходят в промежуток
по формуле приведения
так как 18+36=54, то
т.е. (1)
по формуле синуса двойного угла(аргумента)
(2)
по формуле косинуса суммы :
(3)
Подставив (2) и (3) в (1) получим
(4)
используя формулы синуса двойного угла (выше упоминалась) и косинуса двойного угла
имеем что
(5)
Подставляя (5) в (4), упращая и сокращая обе части равенства на
(6)
Получили квадратное уравнение относительно sin 18
так как , как синус острого угла (т.е. угла большег 0 градусов и меньшего 90 градусов)
Как-то так*