ответ:
объяснение:
1.
(x+2)(x-3)(x-4) < 0
(-2) (3) (4)
x∈(-∞ -2) u (3 4)
2
(x+5)/(x-2)/(x-1)^2 > =0
[-5] (1) [2]
x∈(-∞ -5] u [2 +∞)
3
(2x+1)/(x-3) < =1
(2x+1)/(x-3) - 1< =0
(2x+1 - x + 3)/(x-3)< =0
(x+4)/(x-3)< =0
[-4] (3)
x∈[-4 3)
4
x/(x-4) + 5/(x-1) + 24/(x-1)(x-4) < =0
(x(x-1) + 5(x-4) + 24)/(x-1)(x-4) < =0
(x^2 - x + 5x - 20 + 24) /(x-1)(x-4) < =0
(x^2-4x+4)/(x-1)(x-4) < =0
(x-2)^2/(x-1)(x-4) < =0
(1) [2] (4)
x∈(1 4)
добро ! получи неограниченный доступ к миллионам подробных ответов
попробуй сегодня
надеюсь если сможешь отметь как лучший
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так