Для того, чтобы найти сумму первых двадцати членов арифметической прогрессии заданной формулой n - го члена прогрессии an = 3n + 2 прежде всего вспомним формулу для нахождения суммы n первых членов арифметической прогрессии.
Sn= (a1 + an)/2 * n.
Из заданной формулы найдем первый и двадцатый член арифметической прогрессии:
a1 = 3 * 1 + 2 = 3 + 2 = 5;
a20 = 3 * 20 + 2 = 60 + 2 = 62.
Теперь можем подставить найденные значения в формулу для нахождения суммы и произвести вычисления.
S20= (a1 + a20)/2 * 20 = (5 + 62)/2 * 20 = 67/2 * 20 = 67 * 10= 670.
Объяснение:
Объяснение:
Как я понял, устройства все одинаковые.
С вероятностью p1= 1/2 они дают 0, с p2=1/3 дают 1 В, и с p3=1/6 дают 3 В.
А) Сумма 2 выходов означает, что одно устройство выдаст U1, а другое U2.
Вероятность, что произойдет именно два таких выхода одновременно, равна произведению вероятностей каждого из выходов.
0+0=0: p1*p1=1/2*1/2=1/4
0+1=1: p1*p2=1/2*1/3=1/6
0+3=3: p1*p3=1/2*1/6=1/12
1+0=1: p2*p1=1/3*1/2=1/6
1+1=2: p2*p2=1/3*1/3=1/9
1+3=4: p2*p3=1/3*1/6=1/18
3+0=3: p3*p1=1/6*1/2=1/12
3+1=4: p3*p2=1/6*1/3=1/18
3+3=6: p3*p3=1/6*1/6=1/36
Для проверки сложим все эти вероятности, сумма должна быть 1.
1/4+1/6+1/12+1/6+1/9+1/18+1/12+1/18+1/36 =
= 9/36+6/36+3/36+6/36+4/36+2/36+3/36+2/36+1/36 =
= (9+6+3+6+4+2+3+2+1)/36 = 36/36 = 1
Все правильно.
Б) Результат в 1 В может получиться двумя :
1 = 0+1 = 1+0
Вероятности одинаковые, 1/6 и 1/6.
Поэтому суммарная вероятность равна
P(1) = 1/6+1/6 = 1/3
Из 360 испытаний получится примерно 360/3 = 120 испытаний с таким результатом.
ответ: 120