Пусть v1 км/ч - скорость лодки, а v2 км/ч - скорость течения. Тогда при следовании лодки по течению её скорость составила v1+v2 км/ч, а при следовании против течения - v1-v2 км/ч. Так как 1 час 24 минуты = 1,4 часа, то по условию 30/(v1+v2)=1,2 и 30/(v1-v2)=1,4. Получена система уравнений:
30/(v1+v2)=1,2 30/(v1-v2)=1,4
v1+v2=30/1,2=25 v1-v2=30/1,4=300/14=150/7
Сложив эти два уравнения и заменив получившимся уравнением первое уравнение системы, получим:
2*v1=325/7 v1-v2=150/7
Из первого уравнения находим v1=325/(2*7)=325/14 км/ч. Подставляя это выражение во второе уравнение, получаем:
(1/х+1/у):(х+у)^2/ху =1/x+y
1) 1/x+1/y=y+x/xy
2) y+x/xy : (x+y)^2/xy= y+x/xy*xy/(x+y)2= 1/x+y
при х=1+ под корнем 5 , у=3- под корнем 5
1/1+корень5+3-корень5= 1/4