Теплохід пройшов 100 км за течією річки і 64 км проти течії , витративши на це 9 год. Знайдіть власну швидкість теплохода , якщо власна швидкість течії дорівнює 2 км/ год
- - - - - - - - - -
Теплоход км по течению реки и 64 км против течения, затратив на это 9 ч. Найдите собственную скорость теплохода, если скорость течения равна 2 км/ч
скорость теплохода → x км/ч
скорость теплохода по течению реки будет (x+2) км/ч
скорость теплохода против течению реки будет (x -2) км/ч
составим уравнение
100 / (x+2) +64 /( x- 2) = 9 ; x > 2 км/ч
100 (x- 2)+ 64( x+2) =9 (x+2) (x -2) ;
100x- 200 + 64x+128 =9 (x²- 2²) ;
164x -72 =9x² - 36 ;
9x² - 164x + 36 =0 ; D₁= D/4 =82² - 9*36 =6400 = 80²
x =( 82 ±80)/9 =162 /9 =18 (км / ч)
x =( 82 - 80)/9 =2/ 9 ( км / ч) < 2 км / ч не решение
ответ: 18 км / ч.
Теплохід пройшов 100 км за течією річки і 64 км проти течії , витративши на це 9 год. Знайдіть власну швидкість теплохода , якщо власна швидкість течії дорівнює 2 км/ год
- - - - - - - - - -
Теплоход км по течению реки и 64 км против течения, затратив на это 9 ч. Найдите собственную скорость теплохода, если скорость течения равна 2 км/ч
скорость теплохода → x км/ч
скорость теплохода по течению реки будет (x+2) км/ч
скорость теплохода против течению реки будет (x -2) км/ч
составим уравнение
100 / (x+2) +64 /( x- 2) = 9 ; x > 2 км/ч
100 (x- 2)+ 64( x+2) =9 (x+2) (x -2) ;
100x- 200 + 64x+128 =9 (x²- 2²) ;
164x -72 =9x² - 36 ;
9x² - 164x + 36 =0 ; D₁= D/4 =82² - 9*36 =6400 = 80²
x =( 82 ±80)/9 =162 /9 =18 (км / ч)
x =( 82 - 80)/9 =2/ 9 ( км / ч) < 2 км / ч не решение
ответ: 18 км / ч.
Подготовка к ЕГЭ
Вебинары
Задать вопрос
Войти
АнонимМатематика24 сентября 07:32
Sin3x*cos3x=-1/2 sinx-sin3x+sin5x=0 решите уровнение
ответ или решение1
Стрелков Егор
1. Синус двойного угла:
sin2a = 2sina * cosa;
sin3x * cos3x = -1/2;
2sin3x * cos3x = -1;
sin6x = -1;
6x = -π/2 + 2πk, k ∈ Z;
x = -π/12 + πk/3, k ∈ Z.
2. Сумма синусов:
sina + sinb = 2sin((a + b)/2) * cos((a - b)/2);
sinx - sin3x + sin5x = 0;
(sin5x + sinx) - sin3x = 0;
2sin((5x + x)/2) * cos((5x - x)/2) - sin3x = 0;
2sin3x * cos2x - sin3x = 0;
2sin3x(cos2x - 1/2) = 0;
[sin3x = 0;
[cos2x - 1/2 = 0;
[sin3x = 0;
[cos2x = 1/2;
[3x = πk, k ∈ Z;
[2x = ±π/3 + 2πk, k ∈ Z;
[x = πk/3, k ∈ Z;
[x = ±π/6 + πk, k ∈ Z.
1) -π/12 + πk/3, k ∈ Z;
2) πk/3; ±π/6 + πk, k ∈ Z.