Школьник прочитал книгу за три дня. в первый день он прочитал 0,2 всей книги и ещё 16 страниц, во второй день- 0,3 остатка и ещё 20 страниц. В третий день- 0,75 остатка и последние 30 страниц. Сколько страниц в книге?
Из условия следует что поєтому 1) неверно => т.е. первое утверждение неверно --контпример а=-1<0, a^3=(-1)^3=-1<0 2) неверно, числа a и b разных знаков (а отрицательно, b положительно) , значит их произведение в любом случае отрицательно, т.е. быть больше 1 не может 3) верно квадрат любого выражения число неотрицательное поэтому для любого a а так как => и 4) неверное так как а - отрицательное, то 1/a тоже отрицательное так как b - положительное, то 1/b тоже положительное отрицательное всегда меньше положительного значит утверждение неверно ответ: верное 3)
ответ: n ∈ (-∞; -√12] ∪ [+√12; +∞).
x² + nx + 3n = 0,
Это совсем как квадратное уравнение, в котором нужно найти x. Выполним первый шаг, найдем дискриминант:
D = √(b² - 4ac) = √(n² - 4*1*3) = √(n² - 12).
Мы знаем, что из отрицательных чисел корень нельзя извлечь (в рамках действительных чисел), так что на дискриминант такое ограничение:
n² - 12 ≥ 0, то есть n² ≥ 12.
Решив это уравнение, получаем, что:
n ∈ (-∞; -√12] ∪ [+√12; +∞).
Это означает, что x - любое действительное число от минус бесконечности до -√12 включительно, а также от +√12 включительно до плюс бесконечности.
То есть n может быть равен, например, +√12, -√12, -100, - 45, 100 и так далее, но не может быть равен 0, 1, 5, -7, -11 и так далее.