Например, 154 = 11*14 Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9. Или 847 = 11*77 8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9. Нашел простым подбором, это было нетрудно. А вот найти все решения через решение уравнений - трудно. Если число 100a + 10b + c, то должна выполняться одна из систем: { a + c = b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = b { a^2 + b^2 + c^2 = 9k + 6 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 6
Умножение чисел с одинаковыми основаниями, но разными по показателям степеней происходит так: основание остается прежним, а показатели степеней складываются, т.е. икс в минус седьмой умножить на икс в девятой степени будет равно иксу во второй степени (т.к. -7 + 9 = 2) Деление чисел с одинаковыми основаниями, но разными показателями происходит подобным образом, только показатели степеней отнимаются, следовательно, икс во второй степени разделить на икс в четвертой степени будет равно иксу в минус 2 ( т. к. 2-4=-2) ответ: икс в минус второй степени
-2y= 1 - 6x
y= 3x - 0,5
0= 3*x0 - 0,5
-3*x0=0,5
x0= - 1/6
Ox (-1/6; 0)