4. a) Задайте линейную функцию y = kx формулой, если известно, что ее график параллелен прямой -5x - y + 4 = 0 б) Определите, возрастает или убывает заданная вами линейная функция.
По теореме Виета для уравнение четвертой степени получаем соотношение \sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]
Учитывая условия что коэффициенты все выражаются в радикалах , то сумма всех корней выраженные в радикалах есть число радикальное . По третьем равенству первой системы , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
1) Переносим x из правой части уравнения в левую, изменив знак 2x < x + 7 x < 7 Например, можно подставить вместо х 5 или 3, они будут меньше 7. 2) 3x > 15 Делим обе части неравенства на 3 x > 5 3) -4 < -16 Скорее всего вы здесь пропустили х:) Скорее всего оно было рядом с -4 -4x < -16 Делим обе части неравенства на (-4) Заметь, что если мы делим на отрицательное число, то знак меняется на противоположный x > 4 3) 5x + 1 > 11 Переносим 1 в другую часть 5x > 10 Делим обе части неравенства на 5 x > 2 Например, решениями могут быть 3, 5, 10, т.к. они все больше двух
Она возрастает, так как х у тебя положительный