Решение: Из теоремы Пифагора мы знаем, что в прямоугольном треугольнике: с^2=a^2+b^2, можно найти стороны катетов. Для этого один из катетов пусть будет обозначен а, а второй: b= а+2, подставим данные этой задачи и найдём катеты этого. 10^2=a^2+(a+2)^2 100=a^2+a^2+4a+4 Решим данное уравнение: 2a^2+4a-96=0 приведём это квадратное уравнение к простомц квадратному уравнению, разделив его на 2, a^2+2a-48=0 a1,2=-1+-sqrt(1+48)=-1+-7 a1=-1+7=6 a2=-1-7=-8 (не соответствует условию задачи) Второй катет b=6+2=8
СВОЙСТВА ЧИСЕЛ. ДЕЛИМОСТЬ 1. Если в произведении двух чисел первый множитель увеличить на 1, а второй уменьшить на 1, то произведение увеличится на 2011. Как изменится произведение исходных чисел, если, наоборот, первый множитель уменьшить на 1, а второй увеличить на 1? ответ. Уменьшится на 2013. Решение. Пусть изначально были числа x и y (с произведением xy ). После того как первый множитель увеличили на 1, а второй уменьшили на 1, получилось (x 1)( y 1) = xy y x 1. Произведение увеличилось на 2011, то есть y x 1= 2011 или y x = 2012 . Если же первый множитель уменьшить на 1, а второй увеличить на 1, получится (x 1)( y 1) = xy y x 1. Заметим, что xy y x 1= xy ( y x) 1= xy 2012 1= xy 2013 . То есть произведение уменьшилось на 2013. 2. Даны ненулевые числа x, y и z. Чему может равняться значение выражения (
|| − ||
) ∙ (
|| − ||
) ∙ (
|| − ||
) ответ. 0. Решение. Докажем, что выражение, стоящее по крайней мере в одной из скобок, равно нулю. Выражение, стоящее в первой скобке, принимает нулевое значение, если x и y одного знака. Аналогично для второй и третьей скобок. Но среди ненулевых чисел x, y и z обязательно найдутся либо два положительных числа, либо два отрицательных. А значит, хотя бы один из трех множителей равен нулю. Поэтому все произведение равно нулю. 3. Сравнить числа: 9 9 100 1 . . . 5 2 5 3 1 5 1 5 2 1 5 0 5 1 1 и 100 1 . ответ обосновать! ответ. Числа равны. Решение. Справедливо равенство 1 1 1 ( 1) 1 n n n n . Применяя его к сумме дробей, получим 100 1 100 1 5 0 1 100 1 9 9 1 . . . 5 2 1 5 1 1 5 1 1 5 0 1 . 4. Сумма двух положительных чисел и сумма их кубов являются рациональными числами. Можно ли утверждать, что а) сами числа рациональны? б) сумма их квадратов рациональна? ответ. а) Нет. б) Да, можно. Указание. а) В качестве примера можно взять числа a 2 1, b 2 1 . б) Пусть числа x a b и 3 3 y a b рациональны. Тогда 3 ( ) 3 3 3 x a b ab a b = y 3x ab. Отсюда x x y ab 3 3 – рациональное число. Поэтому число a b (a b) 2ab 2 2 2 также рационально.
Из теоремы Пифагора мы знаем, что в прямоугольном треугольнике: с^2=a^2+b^2, можно найти стороны катетов. Для этого один из катетов пусть будет обозначен а, а второй: b= а+2, подставим данные этой задачи и найдём катеты этого.
10^2=a^2+(a+2)^2
100=a^2+a^2+4a+4
Решим данное уравнение:
2a^2+4a-96=0 приведём это квадратное уравнение к простомц квадратному уравнению, разделив его на 2,
a^2+2a-48=0
a1,2=-1+-sqrt(1+48)=-1+-7
a1=-1+7=6
a2=-1-7=-8 (не соответствует условию задачи)
Второй катет b=6+2=8
ответ: Длины катетов равны: 6; 8