Объяснение При пересечении параллельных прямых секущей образуется 8 углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны, значит их сумма 180°:
х - меньший угол, у = 5х
x + 5x = 180°
6x = 180°
x = 30°
∠1 = ∠5 = ∠3 = ∠7 = 30°
у = 180° - 30° = 150°
∠2 = ∠6 = ∠4 = ∠8= 150°
|2x+4,4|-3=|2x+1,4|
нули модулей x = -2.2 x = -0.7
раскрытие модулей
|2x+4,4| |2x+1,4|
x < -2.2 -(2x + 4.4) -(2x + 1.4)
-2.2 <=x <= -0.7 (2x + 4.4) -(2x + 1.4)
x > -0.7 (2x + 4.4) (2x + 1.4)
1. x < -2.2
-(2x + 4.4) - 3 = -(2x + 1.4)
-2x - 4.4 - 3 = -2x - 1.4
-7,4 = -1.4
x ∈ ∅
2. -2.2 <=x < -0.7
(2x + 4.4) - 3 = -(2x + 1.4)
2x + 1.4 = -2x - 1.4
4x = -2.8
x = -0.7
3. x > -0.7
(2x + 4.4) - 3 = (2x + 1.4)
2x + 1.4 = 2x + 1.4
0 = 0
x > -0.7
ответ x ∈ [-0.7, +∞)
а) у=9х+5
6х+y=-25
6х+9х+5=-25
15х=-25-5
15х=-30
х=-2
у=9·(-2)+5
у=-18+5
у=-13
в)
y = -8x - 15;
y = 5x + 24,
5x + 24 = -8x - 15;
5x + 8x = -15 - 24;
13x = -39;
x = -39 : 13;
x = -3.
y = 5 * (-3) + 24 = -15 + 24 = 9.
б)
y = 13x - 7;
y = 23x - 6,
23x - 6 = 13x - 7;
y = 13x - 7.
23x - 13x = 6 - 7;
x(23 - 13) = -1;
10x = -1;
x = -1 : 10;
x = -0.1.
y = 13 * (-0.1) - 7 = -1.3 - 7 = -8.3.
ответ: (-0.1; -8.3).
г)
y = -11x + 9;
y = -21x + 11,
-21x + 11 = -11x + 9;
y = -11x + 9.
-21x + 11x = 9 - 11;
-10x = -2;
x = -2 : (-10);
x = 1/5.
x = 1/5 = 0.2;
y = -11 * 1/5 + 9 = -2.2 + 9 = 6.8.
Объяснение: