Прямые y=a+x и y=a-x симметричны относительно оси ординат и образуют с осью обсцисс у = 0 равнобедренный треугольник с высотой, равной а, проведенной к основанию. Каждая из этих прямых имеет угловой коэффициент, равный 1 по модулю, в первом случае +1, во втором - 1.
Половина основания полученной фигуры - равнобедренного треугольника - равна а, а боковая сторона этого треугольника равна а корней из 2.
Центр тяжести треугольника находится в точке пересечения его медиан. Высота а также является и медианой, так как треугольник равнобедренный. Абсцисса точки, являющейся центром тяжести, равно нулю (х = 0).
Медианы делятся точкой пересечения в отношении 2:1, считая от вершины. Потому ордината искомой точки равна а/3.
Таким образом, коориднаты центра тяжести искомой фигуры равны:
Абсцисса 0
Ордината а/3
ответ: (0; а/3)
Получим
(x - 1)*(x + 3)^2 - 5*(x + 3) = 0
Выносим общий множитель, имеем
( x + 3)*( (x - 1)*( x + 3) - 5) = 0
Аккуратно раскрываем скобки, приводим подобные
( x + 3)*( x^2 + 3x - x - 3 - 5) = 0
( x + 3 )*( x^2 + 2x - 8) = 0
Приравниваем каждое к нулю и решаем отдельно
(1)
x + 3 = 0
x₁ = - 3
(2)
x^2 + 2x - 8 = 0
Решим квадратное уравнение через дискриминант
D = b^2 + 4ac = 4 + 4*8 = 36 = 6^2 > 0
x₂ = ( - 2 + 6)/2 = 4/2 = 2;
x₃ = ( - 2 - 6)/2 = - 8/2 = - 4;
ответ :
- 4; - 3; 2