Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
х должен быть больше 0.
Прологарифмируем обе части неравенства по основанию2:
Log (х в степени Log х по осн.2) по основанию 2 (меньше или равно) Log16 по основанию2.
Log х по основанию 2 * Log х по основанию 2 (меньше или равно) 4.
(Log х по основанию 2) в квадрате меньше или равно 4
Пусть Log х по основанию 2 = у
у в квадрате меньше или равно 4
у в квадрате - 4 меньше или равно 0. Решим это неравенство методом интервалов.
(у - 2)(у+2) меньше или равно 0. Отсюда у меньше или равно 2, но больше или равно -2.
Тогда Log х по основанию 2 меньше или равно 2, но больше или равно -2.
или log х по основанию 2 меньше или равно iog 4 по основанию 2, но больше или равно log 1/4 по основанию 2.
Отсюда х меньше или равно 4, но больше или равно 1/4. Удачи!