Объяснение:
1. Преобразовать выражение в многочлен:
а) (2 – a)²=4-4а+а² квадрат разности
б) (n – 8)∙(n + 8)=n²-64 разность квадратов
в) (7b + 3x)²=49b²+42bx+9x² квадрат суммы
г) (2a + 3b)∙(3b – 2a)=9b²-4a² разность квадратов
2. Разложить на множители:
а) 16 – t²=(4-t)(4+t) разность квадратов
б) x² +10xy + 25y²=(x+5y)²=(x+5y)(x+5y) квадрат суммы
в) 0,0009 b² – 1=(0,03-1)(0,03+1) разность квадратов
3. Упростить выражение:
(b – 8)² – (64 – 16b) (b + 2) + (х – 1)(х + 1)=
=b²-16b+64-(64b+128-16b²-32b)+(x²-1)=
=b²-16b+64-(32b+128-16b²)+(x²-1)=
=b²-16b+64-32b-128+16b²+x²-1=
=17b²+x²-48b-65
4. Решить уравнение:
(4 - 2x)² = x(2,5 + 4x)
16-16x+4x²-2,5x-4x²=0
-18,5x= -16
x= -16/-18,5
x=32/37
При проверке левая часть уравнения равна правой, равна
5 и 211/1369.
График
Точки пересечения с осью ОХ:
Графики функций
которых направлены вниз, а вершины в точках (0, а).
При х=0 sin0=0 и точка (0,0) является точкой пересечения
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0 точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ: а=0.