Найдите уравнение касательной к графику функции f(x)= квадратный корень х, которая параллельна прямой, заданной уравнением у= х - 5. ответ: х + одна четвертая с заранее )
для начала нам нужно написать само ур-е касательной, потом найти значение х( правый верхний угол), х подставить в первоначальное ур-е(корень из х), найти производную, подставить значение х в производную....
Так как нам требуются только двухзначные числа, то ограничим сами множества: Получаем следующее множество:
Проделаем то же самое и с множеством В:
Вспомним определения: - то есть, это такое множество всех k, так что, либо k в А либо в В, или в А и в В одновременно. - то есть, это такое множество всех k, так что, k и в А и в В одновременно.
В нашем случае: - то есть, это множество всех чисел которые кратны либо 25 либо 15, или 25 и 15 одновременно.
Для пересечения поначалу найдем те числа, которые кратны и 25 и 15 одновременно:
Делаем тоже самое что и при нахождении НОК 2 чисел. Следовательно, это числа вида:
Так как нам нужны только двухзначные числа. То это лишь 1 число, 75:
2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.
3) Функция не периодическая.
4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.
5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая – вертикальная асимптота.
6) Находим и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).
В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.
Найти первую производную функции
Для проверки правильности нахождения минимального и максимального значения.
7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).
Найти вторую производную функции
8) Выясним вопрос об асимптотах.
Наличие вертикальной асимптоты установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.
для начала нам нужно написать само ур-е касательной, потом найти значение х( правый верхний угол), х подставить в первоначальное ур-е(корень из х), найти производную, подставить значение х в производную....