1. Напишите уравнение прямой, проходящей через заданные точки: A (2; 1) B (-1; 2). [2 балла]
2. Найти координаты и радиус центра круга в соответствии с заданным уравнением: (x-4) 2 + (y + 8) 2 = 36 [1 балл]
3. Очки даны.
а) опираться на координаты потолков; [1 балл]
б) найти длину стен; [3 балла]
в) определить тип (равносторонний, равносторонний, прямоугольный); [2 балла]
г) Рассчитать площадь данного треугольника. [2 балла]
4. Найдите площадь прямоугольника с вершинами A (1; -1) B (0; 1) C (4; 3) и D (5; 1) и докажите, что это прямоугольник. Сделать это:
а) нарисуйте схему координат потолков; [1 балл]
б) найти длину стен; [4 балла]
в) определить и доказать диагонали; [2 балла]
г) Рассчитайте площадь прямоугольника. [2 балла]
Объяснение:
памагитеееx2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Объяснение: