1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).
Доведення 1.
0=0
10−10=15−15
10−6−4=15−9−6
2(5−3−2)=3(5−3−2)
скорочуємо одинакові множники
2=3
2+2=3+2
2+2=5
Доведення 2.
1=1
4
4
=
5
5
4·
1
1
=5·
1
1
оскільки
1
1
=
1
1
, то 4=5
А звідси 2+2=5
Доведення 3.
−20=−20
16−36=25−45
16−36+20.25=25−45+20.25
(4−4.5)2=(5−4.5)2
4−4.5=5−4.5
4=5
2+2=5
Доведення 4.
a=b
ab=b2
ab−a2=b2−a2
a(b−a)=(b+a)(b−a)
a=b+a, оскільки b=a, то
a=a+a
a=2a
1=2
звідси очевидним чином випливає, що
1=2 ⇒ 1+3=2+3 ⇒ 4=5 ⇒ 2+2=5
Доведення 5 (для тих хто вчив вищу математику).
Візьмемо інтеграл частинами згідно формул інтегрування частинами:
∫
1
x
dx=[\tableu=
1
x
;du=−
1
x2
dx;dv=dx;v=x]=
1
x
x−∫−
1
x2
xdx=1+∫
1
x
dx
Нехай ∫
1
x
dx=θ, тоді
θ=1+θ
0=1 ⇒ 0+4=1+4 ⇒ 4=5 ⇒ 2+2=5
Данный ответ представлен фотографией.