Привет! В первом если раскрыть скобки а^2 + ав -ав+в^2 = а^2+в^2
так как ав и -ав взаимо уничтожаются . Получается а^2+в^2
Во втором случае также а^2+ ав -ав - в^2= а^2-в^2
В примере 3 можно раскрыть скобки а^2 + ав + ав + в^2= а^2+2ав+в^2
Все примеры тождественно равны.
Есть еще формула квадрата суммы двух выражений
^2 - в квадрате
Объяснение:
Привет! В первом если раскрыть скобки а^2 + ав -ав+в^2 = а^2+в^2
так как ав и -ав взаимо уничтожаются . Получается а^2+в^2
Во втором случае также а^2+ ав -ав - в^2= а^2-в^2
В примере 3 можно раскрыть скобки а^2 + ав + ав + в^2= а^2+2ав+в^2
Все примеры тождественно равны.
Есть еще формула квадрата суммы двух выражений
^2 - в квадрате
Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Примеры: 14 и 25 взаимно просты, а 15 и 25 не взаимно просты (у них имеется общий делитель 5).
Наглядное представление: если на плоскости построить «лес», установив на точки с целыми координатами «деревья» нулевой толщины, то из начала координат видны только деревья, координаты которых взаимно просты.
8, 15 — не простые, но взаимно простые.
6, 8, 9 — взаимно простые числа, но не попарно взаимно простые.
8, 15, 49 — попарно взаимно простые.