1. Если х = 0, то у = 0, т. е. общая точку (0; 0) - начало координат
2. Если х ≠ 0, то у > 0, т. е. все точки параболы, кроме начала координат, лежат над осью абсцисс (ось x)
3. Множеством значений функции у = х^2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т. е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у = х^2 - четная).
5. На промежутке [0; + ∞) функция у = х^2 возрастает
6. На промежутке (-∞; 0] функция у = х^2 убывает
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует
Известно, что через 60 часов после выхода, турист оказался ровно посередине между Майкопом и всадником. Тот путь, что впереди, он преодолел совместно с всадником за 15 часов. Найдем во сколько раз скорость туриста меньше скорости всадника Пусть скорость туриста х км/ч, а скорость всадника у км/ч, тогда (х + у) км/ч - скорость сближения. S₁ = S₂ 60х = 15(х + у) 60х = 15х + 15у 60х - 15х = 15у 45х = 15у 3х = у у/х = 3 (раза) - во столько раз скорость туриста меньше скорости всадника.
Во сколько раз меньше скорость, во столько же раз больше время, затраченное на один и тот же путь. До момента встречи и турист, и всадник провели в пути по: 60 + 15 = 75 (ч). На путь пройденный всадником, турист затратит в 3 раза больше времени: 75 * 3 = 225 (ч). Всего на весь путь у туриста уйдет: 75 + 225 = 300 (ч). ответ: 300 часов.
График функции y = x^2 отображается параболой
Свойства:
1. Если х = 0, то у = 0, т. е. общая точку (0; 0) - начало координат
2. Если х ≠ 0, то у > 0, т. е. все точки параболы, кроме начала координат, лежат над осью абсцисс (ось x)
3. Множеством значений функции у = х^2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т. е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у = х^2 - четная).
5. На промежутке [0; + ∞) функция у = х^2 возрастает
6. На промежутке (-∞; 0] функция у = х^2 убывает
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует