1. Перепишите текст, раскрывая скобки, вставляя, где это необходимо, пропущенные буквы и знаки препинания. Петька и Мишка устало пл..лись по пусты..ому берегу моря(4). От едва кольшущегося моря на мальчиков веяло стра(н/нным П., коем и тиш..ной. Лучи не зашедшего еще за г..ризонт со..Hца ск..льзили по ле..ким волнам, наб..гавшим на берег. Пропитанная полы. Ым зап..хом дли..ая степная дорога к морю осталась позади, с Впереди во всю даль и ширь ра(с/сс)т..лалось открытое море. И ребятам казалось, что они добр..лись до самого края света, что дальше уже нет н., чего. Есть одно тихое море а над такое же бе(с/з)крайнее(2) небо, лишь кое-где покрытое бледно(розовыми облачками, Мальчики, утомленные долгим путем, шли молча. Их(3) головы прятались за ворохам сухого бур..яна, который они собрали для будущего к..стра, HIM
По определению Поэтому т.е слева от точки 2 подмодульное справа от точки 2 подмодульное выражение берется со знаком "-" выражение со знаком "+" - + --------------------------------------------------------(2)------------------ Аналогично т.е слева от точки 4 подмодульное справа от точки 4 подмодульное выражение берется со знаком "-" выражение со знаком "+" ------------------------------------------------------------------(4)------------------ - + Изобразим на одной координатной прямой. Причем знаки первого подмодульного выражения будем изображать наверху, знаки второго - внизу - + + --------------------------------------(2)--------------------(4)-------------- - - + Раскрываем модули на (-∞;2]. Оба подмодульных выражения раскрываем с противоположным знаком: |x-2|=-(x-2)=-х+2 ; |x-4|=-(x-4)=-х+4 Уравнение принимает вид: -x+2-x+4=3 -2х+6=3 -2х=-3 х=3/2 х=1,5 1,5 ∈(-∞;2]
Раскрываем модули на (-2;4]: |x-2|=x-2 ; |x-4|=-(x-4)=-х+4 Уравнение принимает вид: x-2-x+4=3 2=3 -неверное равенство Уравнение не имеет корней
Раскрываем модули на (4;+∞). Оба подмодульных выражения раскрываем не меняют выражения: |x-2|=x-2 ; |x-4|=x-4 Уравнение принимает вид: x-2+x-4=3 2х-6=3 2х=9 х=9/2 х=4,5 4,5 ∈(4;+∞) ответ. 1,5 ; 4,5 Остальные примеры решаются аналогично. 2) - + + -----------(-2)-------------(3)------------ + + - на (-∞;-2] уравнение принимает вид: -х+2-3(3-х)+х=0 или 3х=7 х= 7/3 - не принадлежит промежутку (-∞;-2), не является корнем уравнения на (2;3] уравнение принимает вид: х-2-3(3-х)+х=0 или 5х=11 или х=2,2 2,2∈ (2;3] , значит х=2,2 - корень уравнения на (3;+∞) уравнение принимает вид х-2+3(3-х)+х=0 или х=7 7∈(3;+∞), значит х=7 является корнем уравнения ответ. 2,2 ; 7 3) - + + ------------------(1)--------------------(4)---------------- + + -
на (-∞;1] уравнение принимает вид: 4-х-2х+2=5-2х или х=1 1∈(-∞;1] , значит х=1 - корень уравнения. на (1;4) уравнение принимает вид: 4-х+2х-2=5-2х или 3х=3 или х=1 1∉(1;4) , на данном промежутке уравнение не имеет корней на (4;+∞) уравнение принимает вид: -4+х+2х-2=5-2х или 5х=11 или х=2,2 2,2∉(4;+∞) уравнение не имеет корней на данном промежутке ответ. х=1 5) |x| - - + + |3x+2| - + + + |2x-1| - - - + ------------------(-2/3)-------(0)------------(1/2)--------------- (-∞;-2/3] - x -3x - 2 - 2x +1 = 5 или -6х=6 или х=-1 -1∈(-∞;-2/3] х=-1 - корень уравнения (-2/3;0] х - 3х - 2 - 2х + 1 = 5 или -4х=6 или х=-3/2 -3/2∉(-2/3;0] х=-1,5 не является корнем уравнения (0;1/2] x+3x+2-2x+1=5 или 2х=2 или х=1 1∉(0;1/2] х=1 не является корнем уравнения (1/2;+∞) х+3х+2+2х-1=5 или 6х=4 х= 2/3 2/3∈(1/2;+∞) ответ. х=-1 ; х=2/3
По определению Поэтому т.е слева от точки 2 подмодульное справа от точки 2 подмодульное выражение берется со знаком "-" выражение со знаком "+" - + --------------------------------------------------------(2)------------------ Аналогично т.е слева от точки 4 подмодульное справа от точки 4 подмодульное выражение берется со знаком "-" выражение со знаком "+" ------------------------------------------------------------------(4)------------------ - + Изобразим на одной координатной прямой. Причем знаки первого подмодульного выражения будем изображать наверху, знаки второго - внизу - + + --------------------------------------(2)--------------------(4)-------------- - - + Раскрываем модули на (-∞;2]. Оба подмодульных выражения раскрываем с противоположным знаком: |x-2|=-(x-2)=-х+2 ; |x-4|=-(x-4)=-х+4 Уравнение принимает вид: -x+2-x+4=3 -2х+6=3 -2х=-3 х=3/2 х=1,5 1,5 ∈(-∞;2]
Раскрываем модули на (-2;4]: |x-2|=x-2 ; |x-4|=-(x-4)=-х+4 Уравнение принимает вид: x-2-x+4=3 2=3 -неверное равенство Уравнение не имеет корней
Раскрываем модули на (4;+∞). Оба подмодульных выражения раскрываем не меняют выражения: |x-2|=x-2 ; |x-4|=x-4 Уравнение принимает вид: x-2+x-4=3 2х-6=3 2х=9 х=9/2 х=4,5 4,5 ∈(4;+∞) ответ. 1,5 ; 4,5 Остальные примеры решаются аналогично. 2) - + + -----------(-2)-------------(3)------------ + + - на (-∞;-2] уравнение принимает вид: -х+2-3(3-х)+х=0 или 3х=7 х= 7/3 - не принадлежит промежутку (-∞;-2), не является корнем уравнения на (2;3] уравнение принимает вид: х-2-3(3-х)+х=0 или 5х=11 или х=2,2 2,2∈ (2;3] , значит х=2,2 - корень уравнения на (3;+∞) уравнение принимает вид х-2+3(3-х)+х=0 или х=7 7∈(3;+∞), значит х=7 является корнем уравнения ответ. 2,2 ; 7 3) - + + ------------------(1)--------------------(4)---------------- + + -
на (-∞;1] уравнение принимает вид: 4-х-2х+2=5-2х или х=1 1∈(-∞;1] , значит х=1 - корень уравнения. на (1;4) уравнение принимает вид: 4-х+2х-2=5-2х или 3х=3 или х=1 1∉(1;4) , на данном промежутке уравнение не имеет корней на (4;+∞) уравнение принимает вид: -4+х+2х-2=5-2х или 5х=11 или х=2,2 2,2∉(4;+∞) уравнение не имеет корней на данном промежутке ответ. х=1 5) |x| - - + + |3x+2| - + + + |2x-1| - - - + ------------------(-2/3)-------(0)------------(1/2)--------------- (-∞;-2/3] - x -3x - 2 - 2x +1 = 5 или -6х=6 или х=-1 -1∈(-∞;-2/3] х=-1 - корень уравнения (-2/3;0] х - 3х - 2 - 2х + 1 = 5 или -4х=6 или х=-3/2 -3/2∉(-2/3;0] х=-1,5 не является корнем уравнения (0;1/2] x+3x+2-2x+1=5 или 2х=2 или х=1 1∉(0;1/2] х=1 не является корнем уравнения (1/2;+∞) х+3х+2+2х-1=5 или 6х=4 х= 2/3 2/3∈(1/2;+∞) ответ. х=-1 ; х=2/3
Поэтому
т.е
слева от точки 2 подмодульное справа от точки 2 подмодульное
выражение берется со знаком "-" выражение со знаком "+"
- +
--------------------------------------------------------(2)------------------
Аналогично
т.е
слева от точки 4 подмодульное справа от точки 4 подмодульное
выражение берется со знаком "-" выражение со знаком "+"
------------------------------------------------------------------(4)------------------
- +
Изобразим на одной координатной прямой. Причем знаки первого подмодульного выражения будем изображать наверху, знаки второго - внизу
- + +
--------------------------------------(2)--------------------(4)--------------
- - +
Раскрываем модули на (-∞;2].
Оба подмодульных выражения раскрываем с противоположным знаком: |x-2|=-(x-2)=-х+2 ; |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
-x+2-x+4=3
-2х+6=3
-2х=-3
х=3/2
х=1,5
1,5 ∈(-∞;2]
Раскрываем модули на (-2;4]: |x-2|=x-2 ; |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
x-2-x+4=3
2=3 -неверное равенство
Уравнение не имеет корней
Раскрываем модули на (4;+∞).
Оба подмодульных выражения раскрываем не меняют выражения:
|x-2|=x-2 ; |x-4|=x-4
Уравнение принимает вид:
x-2+x-4=3
2х-6=3
2х=9
х=9/2
х=4,5
4,5 ∈(4;+∞)
ответ. 1,5 ; 4,5
Остальные примеры решаются аналогично.
2)
- + +
-----------(-2)-------------(3)------------
+ + -
на (-∞;-2] уравнение принимает вид: -х+2-3(3-х)+х=0 или 3х=7 х= 7/3 - не принадлежит промежутку (-∞;-2), не является корнем уравнения
на (2;3] уравнение принимает вид: х-2-3(3-х)+х=0 или 5х=11 или х=2,2
2,2∈ (2;3] , значит х=2,2 - корень уравнения
на (3;+∞) уравнение принимает вид х-2+3(3-х)+х=0 или х=7
7∈(3;+∞), значит х=7 является корнем уравнения
ответ. 2,2 ; 7
3)
- + +
------------------(1)--------------------(4)----------------
+ + -
на (-∞;1] уравнение принимает вид: 4-х-2х+2=5-2х или х=1
1∈(-∞;1] , значит х=1 - корень уравнения.
на (1;4) уравнение принимает вид: 4-х+2х-2=5-2х или 3х=3 или х=1
1∉(1;4) , на данном промежутке уравнение не имеет корней
на (4;+∞) уравнение принимает вид: -4+х+2х-2=5-2х или 5х=11 или х=2,2
2,2∉(4;+∞) уравнение не имеет корней на данном промежутке
ответ. х=1
5)
|x| - - + +
|3x+2| - + + +
|2x-1| - - - +
------------------(-2/3)-------(0)------------(1/2)---------------
(-∞;-2/3] - x -3x - 2 - 2x +1 = 5 или -6х=6 или х=-1
-1∈(-∞;-2/3] х=-1 - корень уравнения
(-2/3;0] х - 3х - 2 - 2х + 1 = 5 или -4х=6 или х=-3/2
-3/2∉(-2/3;0] х=-1,5 не является корнем уравнения
(0;1/2] x+3x+2-2x+1=5 или 2х=2 или х=1
1∉(0;1/2] х=1 не является корнем уравнения
(1/2;+∞) х+3х+2+2х-1=5 или 6х=4 х= 2/3
2/3∈(1/2;+∞)
ответ. х=-1 ; х=2/3