Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
А) объединяем y>x-3 и y≤-x+3 получаем x-3<y≤-x+3 это возможно когда x-3<-x+3 2x<6 x<3 ответ: x-3<y≤-x+3 при x<3
b) x-2y<4 и x+y<3 ⇒ x<4+2y и x<3-y найдем что меньше 4+2y или 3-y 1) допустим 4+2y < 3-y, тогда 2y+y < 3-4 3y < -1 y<-1/3 x<4+2y при y<-1/3 2) теперь допустим наоборот 4+2y > 3-y y>-1/3 x<3-y при y>-1/3 ответ:x<4+2y при y<-1/3 и x<3-y при y>-1/3
с) -2x+y<-1 и x-y>3 y+1<2х и x-3>y y<2х-1 и x-3>y y<2х-1 и y<x-3 1) пусть 2х-1<x-3 x<-2 ответ: y<2х-1 при x<-2 и y<x-3 при x>-2
d) x+y>=3 и x-y<2
x≥3-y и x<2+y 3-y≤x<2+y Это возможно при 3-y<2+y 1<2y y>1/2 ответ: 3-y≤x<2+y при y>1/2
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.