Существует такое тригонометрическое тождество: sin^2a+cos^a=1, где ^2 - квадрат.
Следовательно, для первого случая: (1/5)^2 + cos^2a =1
1/25 + cos^2a =1
cos^2a = 1 - 1/25
cos^2a = 24/25
cosa = 2√6/5
Для второго случая: мы знаем, что число π≈3,14, значит: (3,14/2)^2 + cos^2a =1
cos^2a =1- 9,8596/4
cos^2a =-1,4649
А так как квадрат не может быть отрицательным, то нет решений.
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.