Пусть неизвестное целое число равно х, тогда х-1 и х+1 - целые числа, расположенные слева и справа от числа х, соответственно. По условию, сумма квадратов данных чисел равна 869. Составим уравнение: (х-1)²+х²+(х+1)²=869 х²-2х+1+х²+х²+2х+1=869 3х²+2=869 3х²=869-2 3х²=867 х²=867:3 х²=289 х= x=
1) x=17 x-1=17-1=16 x+1=17+1=18 Получаем, 16, 17 и 18 - три последовательных целых числа Проверка: 16²+17²+18²=256+289+324=869 2) х=-17 х-1=-17-1=-18 х+1=-17+1=-16 Получаем, -18, -17 и -16 - три последовательных целых числа Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869
Для того, чтобы выполнить упрощение выражений а) 2x - 3y - 11x + 8y; б) 5(2a + 1) - 3; в) 14x - (x - 1) + (2x + 6) мы с вами к каждому из заданных выражений применим алгоритм его упрощения.
Давайте вспомним алгоритм действий:
1. открытие скобок; 2. группировка и приведение подобных слагаемых.
В первом выражение нет скобок и мы переходим к приведению подобных сразу:
а) 2x - 3y - 11x + 8y = 2x - 11x + 8y - 3y = -9x + 5y;
б) 5(2a + 1) - 3 = 5 * 2a + 5 * 1 - 3 = 10a + 5 - 3 = 10a + 2;
в) 14x - (x - 1) + (2x + 6) = 14x - x + 1 + 2x + 6 = 14x - x + 2x + 1 + 6 = 15x + 7.
Объяснение:
.