М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
poli1001
poli1001
03.02.2020 11:01 •  Алгебра

Какая то схема Горнера, теорема Безу вообщем)


Какая то схема Горнера, теорема Безу вообщем)

👇
Ответ:
захар189
захар189
03.02.2020

(x-1)^{3}(x-2)^{2};

Объяснение:

P(x)=x^{5}-7x^{4}+19x^{3}-25x^{2}+16x-4;

Для того, чтобы разложить выражение на множители, приравняем правую часть равенства к нулю:

x^{5}-7x^{4}+19x^{3}-25x^{2}+16x-4=0;

Слагаемое –4 имеет следующие делители:

\pm 1, \quad \pm 2, \quad \pm 4;

Подставим вместо "х" единицу:

1^{5}-7 \cdot 1^{4}+19 \cdot 1^{3}-25 \cdot 1^{2}+16 \cdot 1-4=1-7+19-25+16-4=-6-6+12=0;

Единица обращает уравнение в верное равенство ⇒ один из множителей исходного выражения равен (х – 1). Разделим исходный многочлен на (x – 1):

\frac{x^{5}-7x^{4}}{x-1}=\frac{x^{5}-x^{4}-6x^{4}}{x-1}=\frac{x^{4}(x-1)-6x^{4}}{x-1}=x^{4}-\frac{6x^{4}}{x-1};

\frac{-6x^{4}+19x^{3}}{x-1}=\frac{-6x^{4}+6x^{3}+13x^{3}}{x-1}=\frac{-6x^{3}(x-1)+13x^{3}}{x-1}=-6x^{3}+\frac{13x^{3}}{x-1};

\frac{13x^{3}-25x^{2}}{x-1}=\frac{13x^{3}-13x^{2}-12x^{2}}{x-1}=\frac{13x^{2}(x-1)-12x^{2}}{x-1}=13x^{2}-\frac{12x^{2}}{x-1};

\frac{-12x^{2}+16x}{x-1}=\frac{-12x^{2}+12x+4x}{x-1}=\frac{-12x(x-1)+4x}{x-1}=-12x+\frac{4x}{x-1};

\frac{4x-4}{x-1}=\frac{4(x-1)}{x-1}=4;

x^{5}-7x^{4}+19x^{3}-25x^{2}+16x-4=(x-1)(x^{4}-6x^{3}+13x^{2}-12x+4);

Теперь разложим многочлен

x^{4}-6x^{3}+13x^{2}-12x+4;

Приравняем его к нулю:

x^{4}-6x^{3}+13x^{2}-12x+4=0;

Слагаемое 4 имеет следующие делители:

\pm 1, \quad \pm 2, \quad \pm 4;

Подставим вместо "х" единицу:

1-6+13-12+4=-5+1+4=0;

Единица обращает уравнение в верное равенство ⇒ один из множителей выражения равен (х – 1). Разделим многочлен на (x – 1):

\frac{x^{4}-6x^{3}}{x-1}=\frac{x^{4}-x^{3}-5x^{3}}{x-1}=\frac{x^{3}(x-1)-5x^{3}}{x-1}=x^{3}-\frac{5x^{3}}{x-1};

\frac{-5x^{3}+13x^{2}}{x-1}=\frac{-5x^{3}+5x^{2}+8x^{2}}{x-1}=\frac{-5x^{2}(x-1)+8x^{2}}{x-1}=-5x^{2}+\frac{8x^{2}}{x-1};

\frac{8x^{2}-12x}{x-1}=\frac{8x^{2}-8x-4x}{x-1}=\frac{8x(x-1)-4x}{x-1}=8x-\frac{4x}{x-1};

\frac{-4x+4}{x-1}=\frac{-4(x-1)}{x-1}=-4;

x^{4}-6x^{3}+13x^{2}-12x+4=(x-1)(x^{3}-5x^{2}+8x-4);

Теперь разложим многочлен

x^{3}-5x^{2}+8x-4;

Приравняем его к нулю:

x^{3}-5x^{2}+8x-4=0;

Слагаемое –4 имеет следующие делители:

\pm 1, \quad \pm 2, \quad \pm 4;

Подставим вместо "х" единицу:

1-5+8-4=-4+4=0;

Единица обращает уравнение в верное равенство ⇒ один из множителей выражения равен (х – 1). Разделим многочлен на (x – 1):

\frac{x^{3}-5x^{2}}{x-1}=\frac{x^{3}-x^{2}-4x^{2}}{x-1}=\frac{x^{2}(x-1)-4x^{2}}{x-1}=x^{2}-\frac{4x^{2}}{x-1};

\frac{-4x^{2}+8x}{x-1}=\frac{-4x^{2}+4x+4x}{x-1}=\frac{-4x(x-1)+4x}{x-1}=-4x+\frac{4x}{x-1};

\frac{4x-4}{x-1}=\frac{4(x-1)}{x-1}=4;

x^{3}-5x^{2}+8x-4=(x-1)(x^{2}-4x+4);

Теперь разложим многочлен

x^{2}-4x+4;

Это квадрат разности двух выражений:

x^{2}-4x+4=x^{2}-2 \cdot x \cdot 2+2^{2}=(x-2)^{2};

Выпишем полученные множители:

x^{5}-7x^{4}+19x^{3}-25x^{2}+16x-4=(x-1)(x^{4}-6x^{3}+13x^{2}-12x+4);

x^{4}-6x^{3}+13x^{2}-12x+4=(x-1)(x^{3}-5x^{2}+8x-4);

x^{3}-5x^{2}+8x-4=(x-1)(x^{2}-4x+4);

x^{2}-4x+4=(x-2)^{2};

Отсюда получаем, что

x^{5}-7x^{4}+19x^{3}-25x^{2}+16x-4=(x-1)^{3}(x-2)^{2};

P(x)=(x-1)^{3}(x-2)^{2};

4,5(38 оценок)
Открыть все ответы
Ответ:
1)Найдем дискриминант квадратного уравнения 
D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7
x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4

2)Найдем дискриминант квадратного уравнения
D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155
x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155

3)найдем дискриминант 
D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2
x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3
ax(кв)+bx+c=a(x-x1)(x-x2)
Отсюда x(кв)-5x+6=(x-2)(x-3)

4)найдем дискриминант
D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3
x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2
ax(кв)+bx+с=a(x-x1)(x-x2)
Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)
4,4(27 оценок)
Ответ:
незнаю177
незнаю177
03.02.2020

Объяснение:

6.Надо начертить прямую линию. В середине поставить точку 0. Это будет начало координатной прямой и будет =0.

Вправо от нуля -положительные значения, влево от нуля -отрицательные.

От точки 0 вправо отложить 1,5см (точкаР) и 3см (точкаК).

Влево отложить 3см (т. М ), и так как влево идут отрицательные величины поставить под точкой М -3, затем отложить отнуля влево еще 3,5 см , это будет точка N ( -3,5см).

Противоположные точки( точки, равные по модулю) - это точки 3 и -3.

|3|=3 и |-3|=3

7. | -5,2 | + | -8,4 | = 5,2 +8,4 = 13,6

8. a) | x| - 8 = 0

| x| = 8

x = 8; -8

б) - (-x) = -12

x = -12

в) 3 |x| + 1 =10

3 |x| = 9

|x| = 3

x =3; -3

9. ... = 15/2 * |-2/3| + | 6 | : 1/10 = 15/2* 2/3 + 6/10 = 5 +0,6 = 5,6

10. 4 : (2 |x| +4) = 1

4 : (2x+4) = 1

2x + 4 = 4 : 1

2x = 4-4

2x =0

x =0

4,5(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ