У нас есть три числа, которые могут подойди: -2, 2 и 3. Проверим каждое из них. 1) Число a = -2. Подставим его в уравнение: x^2 - ((-2)^2-5*(-2))x+5*(-2) -1 = 0 Преобразуем его: x^2 -(4+10)x +-10 -1 = 0 x^2 -6x + 9=0 По теореме Виета x1 + x2 =-b ( это число перед x). В данном случае у нас получается -(-6) = 6. Следовательно а= -2 не подходит. 2) Число а =2. x^2 -(2^2 -5*2)x +5*2 -1 = 0 x^2 -(4-10)x + 10 - 1 = 0 x^2 +6x +9 = 0 Проверим это уравнение на корни. x1+x2=-b x1+x2=-6. Число а = 2 подходит. 3) Число а = 3. x^2 - (3^2 -5*3)x+5*3-1=0 x^2 -(6-15)x+ 15 - 1 = 0 x^2 + 9x + 14 = 0 x1+x2=-b x1+x2=-9. Число а = 3 не подходит. Значит ответом к данному заданию является ответ под номером 2)а=2.
Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
Проверим каждое из них.
1) Число a = -2. Подставим его в уравнение:
x^2 - ((-2)^2-5*(-2))x+5*(-2) -1 = 0
Преобразуем его:
x^2 -(4+10)x +-10 -1 = 0
x^2 -6x + 9=0
По теореме Виета x1 + x2 =-b ( это число перед x). В данном случае у нас получается -(-6) = 6. Следовательно а= -2 не подходит.
2) Число а =2.
x^2 -(2^2 -5*2)x +5*2 -1 = 0
x^2 -(4-10)x + 10 - 1 = 0
x^2 +6x +9 = 0
Проверим это уравнение на корни.
x1+x2=-b
x1+x2=-6.
Число а = 2 подходит.
3) Число а = 3.
x^2 - (3^2 -5*3)x+5*3-1=0
x^2 -(6-15)x+ 15 - 1 = 0
x^2 + 9x + 14 = 0
x1+x2=-b
x1+x2=-9.
Число а = 3 не подходит.
Значит ответом к данному заданию является ответ под номером 2)а=2.