через 2 часа.
Объяснение:
У этой задачи есть 2 варианта решения, тк в задаче не указано направление течения реки.
Предположим, что направление течения из А в В. -> первый катер(к1) двигается ПО течению реки, а второй катер(к2) ПРОТИВ(потому что он плывет в противоположном направлении).
1) 20+3= 23(км/ч)- скорость к1 ПО течению.
2) 16-3=13(км/ч)- скорость к2 ПРОТИВ течения.
3) так как катеры двигаются одновременно, то найдем их общую скорость:
23+13=36(км/ч)- общая скорость к2 и к1.
4) время=расстояние/скорость ->
72/36=2(ч)- через столько встретятся к1 и к2.
Теперь ситуация противоположная. Течение идёт из В в А. ->
1) 16+3=19(км/ч)- скорость к2 (тк теперь он плывет по течению)
2) 20-3=17(км/ч)- скорость к1
3) 17+19=36(км/ч)- общая скорость к1 и к2.
4) 72/36=2(ч)- через столько встретятся к1 и к2.
Как видишь, ответы получились одинаковые. Так что выбирай тот который понравился больше)
Дана арифметическая прогрессия -15, -12, ..., то есть a₁= -15, a₂= -12. Тогда
а) её разность:
d = a₂ - a₁ = -12 - (-15) = -12 + 15 = 3.
б) формула n-члена этой прогрессии :
a(n) = -15+3·(n-1)
в) выясним, содержится ли в этой прогрессии число 12:
a(n) = 12 или
-15+3·(n-1) = 12
3·(n-1) = 12 + 15
3·(n-1) = 27
n-1 = 27:3
n = 9+1=10∈N
Содержится под номером 10.
г) Так как d=3 >0, то в этой прогрессии бесконечное количество положительных членов. В самом деле:
a(n) = -15+3·(n-1)>0
3·(n-1)>15
n-1>15:3
n>5+1
n>6
Начиная с 7-члена арифметической прогрессии все члены положительные. Так как множество натуральных чисел N бесконечно, то положительных членов арифметической прогрессии бесконечно.
Объяснение:
а) t² + 5t-6=0;
t1=1; t2= -6.
***
б) t²+ 3t - 10=0;
t1=2; t2= -5.
***
в) 2t²-t-3=0;
t1=1,5; t2= -1.