1) В простейшем случае достаточно выбрать один центр и из него построить 24 дороги ко всем остальным деревням. Все деревни будут связаны друг с другом через центр. Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога, тогда рассуждаем так. Мы проводим от каждой из 25 деревень дороги ко всем 24. Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А. Значит, количество дорог надо разделить на 2. 25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6) Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно. Корни я нашел с Вольфрам Альфа.
√7 + √10 и √3 + √19 Возведём в квадрат: 7 + 2√70 + 10 и 3 + 2√57 + 19 17 + 2√70 и 22 + 2√57 Перенесём 17 в одну сторону, а 2√59 в другую: 22 - 17 и 2√70 - 2√57 5 и 2√70 - 2√57 Возведём ещё раз в квадрат: 25 и 4·70 - 4√3990 + 4·59 25 и 516 - 4√3990 Перенесём 516 в другую сторону: 25 - 516 и -4√3390 -491 и -√63840 -√241081 и -√63840 Второе число больше первого, т.к. оба числа отрицательные, а второе больше по модулю. ответ: второе число больше.
Все деревни будут связаны друг с другом через центр.
Но если надо, чтобы от каждой деревни к каждой шла отдельная дорога,
тогда рассуждаем так.
Мы проводим от каждой из 25 деревень дороги ко всем 24.
Но, если мы соединили деревни А и В, то эта же дорога соединяет В и А.
Значит, количество дорог надо разделить на 2.
25*24/2 = 25*12 = 300. Но в ответе почему-то 600.
2) 9^(x+6) + 3^(x^2) = 2*3^(x^2 + x + 6) = 2*3^(x^2)*3^(x+6)
Видимо, здесь опечатка в задании, потому что это уравнение имеет 3 иррациональных корня: x1 ~ -6,63; x2 ~ -1,87; x3 ~ 2,87, но как его решать, или хотя бы узнать, что корней 3 - совершенно непонятно.
Корни я нашел с Вольфрам Альфа.