Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходиться мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел, Второй замечательный предел. Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.
число 79
Объяснение:
Пусть 10а+b искомое заданное число (a,b - цифры)
Тогда 10a+b=(a+b)*k+15, где k є Z
Если остаток 15, то делимое должно быть больше 15, т.е.
a+b>15 (a+b>=16)
Если хотя бы одна цифра меньше 7, то a+b<7+9=16, поэтому расмотрим оставшиеся варианты
a=7, b=7 7+7=14<16
a=7, b=8 7+8=15<16
a=7, b=9 9+7=16; 79:(7+9)=4 (ост. 15) подходит
a=8, b=7 8+7=15<16
a=9, b=7 9+7=16; 97:(9+7)=6(ост. 1)
a=8, b=8: 88:(8+8)=5 (ост. 8)
a=9, b=8: 98:(8+9)=5 (ост. 13)
a=9, b=9: 99:(9+9)=5 (ост. 9)
a=8, b=9: 89:(8+9)=5 (ост.4 )