x+y=4 x^2 - y^2 = 8
y = 4 - x Подставляем x^2 - (4-x)^2 = 8
y = 4- x Подносим к степени. Присутствует форма сокращенного умножения. x^2 - (16 - 8х + x^2) = 8
y = 4 - x x^2 - 16 + 8x - x^2 = 8
y = 4-x x^2 Сокращается 8x = 8 + 16
y = 4 - x 8x = 24
y = 4 - x x = 3
Так как из второго уравнения системы мы уже знаем, чему равен ноль - также подставляем.
y = 4 - 3 x = 3
y = 1 x=3
task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.
Объяснение:
4x^2-28x+40=0
X^2-7x+10=0
X=2
X=5
X^4-12x^2+35=0
X^2=t
T^2-12t+35=0
T=5
T=7
X=±корень из5
Х=±корень из 7
3адание в фото