6543 и 6210
Объяснение:
Рассматриваются четырёхзначные числа M, среди которых нужно выбрать числа, удовлетворяющие условиям:
1) 6000 < M < 7000;
2) M делится на 9;
3) каждая следующая цифра M меньше предыдущей.
Если представить число M в виде , где хотя-бы один из цифр x или y или z отличен от 0, то 1-условие выполнено. Но, если выполняется 3-условие, то есть если 6>x>y>z, то 1-условие выполняется.
Рассмотрим все числа вида , для которых выполнено 3-условие:
6543, 6542, 6541, 6540, 6532, 6531, 6530, 6521, 6520, 6510;
6432, 6431, 6430, 6421, 6420, 6410;
6321, 6320, 6310;
6210.
Остается проверить 2-условие для этих чисел. Используем признак делимости на 9:
Число А делится на 9 ⇔ Сумма цифр числа А делится на 9.
Нетрудно проверить, что только следующие числа делятся на 9:
6543 (6+5+4+3=18) и 6210 (6+2+1+0=9).
2a^2 - 3b) * (a^2 + 2ab + 5b^2) = 2a^4 + 4a^3 * b + 10a^2 * b^2 - 3a^2 * b - 6ab^2 - 15b^3;
2) (x^2 - 2xy) * (x^2 - 5xy + 3y^2) = x^4 - 5x^3 * y + 3x^2 * y^2 - 2x^3 * y + 10x^2 * y^2 - 6xy^3 = x^4 - 7x^3 * y + 13x^2 * y^2 - 6xy^3;
3) (x - y) * (x^3 + x^2 * y + x * y^2 + y^3) = x^4 + x^3 * y + x^2 * y^2 + xy^3 - x^3 * y - x^2 * y^2 - xy^3 - y^4 = x^4 - y^4;
4) (a + b) * (a^3 - a^2 * b + a * b^2 - b^3) = a^4 - a^3 * b + a^2 * b^2 - ab^3 + a^3 * b - a^2 * b^2 + ab^3 - b^4 = a^4 - b^4;
5) (5a - 4b) * (a^3 + 2a^2 * b - 5a * b^2 - 3b^3) = 5a^4 + 10a^3 * b - 25a^2 * b^2 - 15ab^3 - 4a^3 * b - 8a^2 * b^2 + 20ab^3 + 12b^4 = 5a^4 + 6a^3 * b - 33a^2 * b^2 + 5ab^3 + 12b^4;
6) (2x + 3y) * (x^3 + 3x^2 * y - 3x * y^2 + 4y^3) = 2x^4 + 6x^3 * y - 6x^2 * y^2 + 8xy^3 + 3x^3 * y + 9x^2 * y^2 - 9xy^3 + 12y^4 = 2x^4 + 9x^3 * y + 3x^2 * y^2 - xy^3 + 12y^4.
Объяснение:
если модешь сделай лутшим ответом