Привет! Извини, что не могу быстро ответить! После уроков домой прихожу в 16.00-17.00, сижу здесь примерно в это время(после школы)! Задачка твоя: Разложение многочлена! Вынесение общего множителя за скобки. Пример: ab+ac-ad=a(b+a-d). То есть выносишь то, что есть в каждом множителе или тобой выбранном! группировки. Все члены многочлена не имеют общего множителя, но многочлены можно сгруппировать. Пример: 2a+bc+2b+ac=(2a+2b)+(bc+ac)=2(a+b)+c(b+a). Формулы сокращённого умножения! Вернемся к примеру. 1. Это уравнение и т.к. решить это с ходу в 7-8 классе тяжело упрощаем уравнение, а то есть левую часть! x^2-4y^2+4y-1=0 не подходит, т.к. не во всех членах есть одинаковая цифра/буковка. Действуем группировкой :) Группируем члены (x^2)^2-1-4y^2+4y(вроде ясно что я сгруппировала!) Теперь 1 = 1^2, 1^10000, 1^46785. Это понятно?! Теперь применяем к первой части(та что жирным выделена формулу разности квадратов x^2-y^2=(x-y)(x+y), а из второй части(подчёркнутой) из обоих частей выносим 4y Выходит: (x^2-1)(x^2+1)-4y(y+1). Всё: (x^2-1)(x^2+1)-4y(y+1)=0 Если задание требует, то решаем уравнение. Вроде правильно, я бы так сделала! Удачи!
{x+2y=10 => y=(10-x)/2 => -0.5x+5
{f(x)=3x-2
{f(x)=-0.5x+5
x=2
y=4
Проверка: {3*2-4=2
{2+2*4=10
Графическое решение - во вложении
2. {x-3y=6 => x=6+3y
{2y-5x=-4
2y-5(6+3y)=-4
2y-30-15y=-4
-13y=26
y=-2
x=6+3*-2
x=0
3. {3x-2y=4 |*2
{6x+4y=16 |*1
{6x-4y=8
{6x+4y=16
12x=24
x=2
3*2-2y=4
-2y=-2
y=1
6*2+4y=16
12+4y=16
4y=4
y=1
Координаты точки пересечения графиков (2;1)
4. {4x-6y=2 |*1
{3y-2x=1 => -2x+3y=1 |*2
{4x-6y=2
{-4x+6y=2
4x-4x-6y+6y=2+2
0=4 - равенство неверно
Cистема не имеет решений