Уравнение касательной для функции f(x) = e^x в точке x = x0 имеет вид y = (e^x0) * x + b { Общее уравнение касательной для функции f(x): y = mx+b, где m - slope factor,m = d/dx*f(x), в нашем случае m=d/dx*f(x) = (e^x)' = e^x } если прямая y=x+1 есть касательная к f(x), тогда m =1, b=1 т.к. формула касательной для нашей функции y = (e^x0) * x + b, то e^x0 = 1, b = 1, откуда x0 = 0, в точке x0 должна также совпасть координата y0 (значение функции f(x0) и точка касательной y(0)), действительно, f(0) = e^0 = 1, y(0) = e^0 * 0 + 1 = 1, совпадают, f(0) = y(0) = 1 таким образом прямая y=x+1 является касательной к y = e^x в точке с координатами (0,1)
Пусть х деталей в час должен был обрабатывать токарь по плану. Применив новый резец, он стал обтачивать в час на 20 деталей больше, т.е. х+20 деталей. Тогда токарь должен был обработать 120 деталей за часов, а обработал за часов, закончив работу на 1 час раньше. Составим и решим уравнение: - =1 (умножим на х(х+20), чтобы избавиться от дробей) - =1x(x+20) 120*(х+20)-120х=х²+20х 120х+2400-120х-х²-20х=0 -х²-20х+2400=0 х²+20х-2400=0 D=b²-4ac = 20²-4*1*(-2400)=400+9600=10 000 (√10000=100) х₁= х₂= - не подходит, поскольку х<0. ОТВЕТ: по плану токарь должен был обработать 40 деталей в час. ------------------------- Проверка: 120:40=3 часа 120:(40+20)=120:60=2 часа 3 часа - 2 часа = 1 час - разница
25000+25000*8/100=25000+2000=27000