Объяснение:Число делится на 7, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 7. Наше число, состоящее из 2011 пятёрок делится на 7 в том и только в том случае, если на 7 делится знакопеременная сумма, получаемая следующим образом: десятичную запись числа разбивают на группы по 3 цифры справа налево (у нас будет 670 групп по три пятёрки , самая левая группа будет состоять из одной цифры 1 ) и все полученные числа складывают. (2011:3=670·3+1). Знакопеременная сумма это +-+-+-+-+. Начинать расставлять знаки нужно с конца числа, причём первым, как уже было сказано обязательно должен быть +. Сумма этих 670 групп по ±555 будет равна нулю, т.к получим 335 сумм противоположных чисел (-555+555). То есть получим: 5+555+555-555+555-555+555...-555+555=5+0=5. Результат не делится на 7, значит и наше число не делится на 7.
Проверим
: имеем уравнение
- очевидно, не положительное решение, поэтому данное значение параметра не пойдет в ответ.
При
уравнение - квадратное вида
. Коэффициенты:
(внезапно),
,
. Уравнение должно иметь корни по условию, т.е. его дискриминант как минимум не должен быть меньше 0.
Ищем дискриминант:
Найдем дискриминант трехчлена
: 
Это значит что при любых
выражение 
, т.е. исходное уравнение всегда имеет 2 корня.
Могут быть три ситуации: 1) оба корня отрицательные; 2) корни имеют разные знаки; 3) оба корня положительные. Условию (нужно как минимум одно положительное решение) удовлетворяют только 2 и 3.
Проверим второй случай. Если корни имеют разные знаки, то достаточно условия
. По теореме Виета
Так как в нашем случае
, то
при любых
. Т.е. при любых значениях параметра (кроме
) корни имеют разные знаки. Т.е. 3 случай уже можно не рассматривать, так как оба корня не могут быть положительными.
Значит, нас устраивают любые
, кроме
.
ОТВЕТ: при
.