М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
valeria02042004
valeria02042004
06.04.2023 08:31 •  Алгебра

Найдите производную функции

б)sin3x*cosx
в)x³/4+x²

👇
Открыть все ответы
Ответ:
Полина3061
Полина3061
06.04.2023
А) Частная производная по х: 
zₓ'=((x+2y)*y²)ₓ'=(xy²+2y³)ₓ'=(xy²)ₓ'+(2y³)ₓ'=y²+0=y²
Частная производная по у (при переписывании вместо а надо писать у, в предложенных индексах нет такой буквы, потому использую а:
zₐ'=((x+2y)*y²)ₐ'=(xy²+2y³)ₐ'=(xy²)ₐ'+(2y³)ₐ'=2xy+6y²

в) zₓ'=(9(x-y²)⁴)ₓ'=9*((x-y²)⁴)ₓ'*(x-y²)ₓ'=9*4*(x-y²)³*1=36(x-y²)³
zₐ'=((9(x-y²)⁴)ₐ'=9*((x-y²)⁴)ₐ'*(x-y²)ₐ'=9*4*(x-y²)³*(-2y)=-72y(x-y²)³

б) zₓ'=(cos(2x+e^y))ₓ'=(cos(2x+e^y))ₓ'*(2x+e^y)ₓ'=-sin(2x+e^y)*2=-2sin(2x+e^y)
zₐ'=(cos(2x+e^y))ₐ'=(cos(2x+e^y)ₐ'*(2x+e^y)ₐ'=-sin(2x+e^y)*e^y
4,5(2 оценок)
Ответ:
dan355
dan355
06.04.2023
Сначала нужно выполнить чертеж (смотрите рисунок). Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы y=4-x² и прямой y=2-x. Это можно сделать двумя
Первый это посмотреть на график где линии пересекаются, второй это аналитический В данном случае можно воспользоваться графическим так как на графике ясно видно, что парабола и прямая пересекаются в точке (-1 ; 3) и (2 ; 0).Но бывают случаи, когда точкой пересечения будет, например, точка (-3,14 ; 1), тогда графически вы не сможете определить точки пересечения, в таком случае используется аналитический метод.
Попробуем применить аналитический для вычисления точек пересечения. Для этого мы приравниваем уравнения y=4-x² и y=2-x
4-x²=2-x
x²-x+2-4=0
x²-x-2=0
применим теорему Виета для решения квадратного уравнения
x₁+x₂=1
x₁x₂= -2
x₁=2
x₂= -1

 Теперь посмотрим где расположена фигура. Нам важно, какой график выше (относительно другого графика), а какой – ниже. 

Из графика видно, что выше расположена парабола y=4-x² , а ниже прямая y=2-x. 

Формула для вычисления площади: S= \int\limits^a_b {(f(x)-g(x))} \, dx где  f(x) это функция которая расположена выше, чем функция g(x)

таким образом для исчисления площади нужно взять интеграл

\int\limits^2_{-1} {((4- x^{2} )-(2-x))} \, dx = \int\limits^2_{-1} {(-x^{2} +x+2)} \, dx = \\ = (-\frac{x^3}{3} +\frac{x^2}{2} +2x) \bigg|^2_{-1}= \\ =(-\frac{2^3}{3} +\frac{2^2}{2} +2*2) -(-\frac{(-1)^3}{3} +\frac{(-1)^2}{2} +2(-1)) = \\ \\ =(-\frac{8}{3} +\frac{4}{2}+4) -(-\frac{-1}{3} +\frac{1}{2} -2) = -\frac{8}{3} +2+4- \frac{1}{3} -\frac{1}{2} +2= \\ \\ = -\frac{9}{3} +8-\frac{1}{2} =-3+8- \frac{1}{2}=5- \frac{1}{2}=4 \frac{1}{2}=4,5

ответ:  площадь фигуры, ограниченной линиями у = 4 - х² и у = 2 - х  равна 4,5 
 

Вычислите площадь фигуры, ограниченной линиями у = 4 - х^2, у = 2 - х.
4,7(79 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ