Пусть первый в час х дет., второй х-6 в час 160:х производ. первого 160:(х-6) производ. второго 160/х=160/(х-6)-6 160(х-6)=160х-6х(х-6) 160х-960=160х-6+36х 6-36х-960=0
6x2 - 36x - 960 = 0 Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-36)^2 - 4·6·(-960) = 1296 + 23040 = 24336 Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: x1 = (36 - √24336)/2*6 = (36 - 156)/12 = -120/12 = -10 x2 = (36 +√24336)/2*6 = (36 + 156)/12=192/12=16 дет в час первый 16-6=10 дет в час второй
Число 59 по условию это число равно: 5х+4=6у+5 5х-6у=5-4 5х-6у=1 5х=6у+1 5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6 Подбираем числа делящиеся на 5: 15=14+1, не подходит, т. к.14 не делится на 6 25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно. 30=29+1 - нет 35=34+1 - нет 40= 39+1- нет 45= 44+1 - нет 50= 49+1 - нет 55=54+1 - да. Тогда задуманное число 55+4=59. 59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
160:х производ. первого
160:(х-6) производ. второго
160/х=160/(х-6)-6
160(х-6)=160х-6х(х-6)
160х-960=160х-6+36х
6-36х-960=0
6x2 - 36x - 960 = 0
Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-36)^2 - 4·6·(-960) = 1296 + 23040 = 24336
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (36 - √24336)/2*6 = (36 - 156)/12 = -120/12 = -10
x2 = (36 +√24336)/2*6 = (36 + 156)/12=192/12=16 дет в час первый
16-6=10 дет в час второй