
и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
У - необходимое число дне по плану
Бригада увеличила производительность в день на 2 изделия, тогда
Х + 3 - производительность изделий в день
У - 3 - число дней уменьшилось на 3 дня, из-за повышения производительности.
Объем работ определяется
где Р - производительность; N - число дней.
По условию задачи, объем задан и равен 120 шт.
Составим систему уравнений
Из первого уравнения
Подставляем во втрое
Корни уравнения х = 8 и х = -10 - лишний корень
ответ: 8 изд. в день