Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
ответ: 49752 ; 99756
Объяснение:
Cразу скажем что a≠0 тк это начало числа.
Если число кратно 36, то оно делится на 9 и на 4.
Число делится на 4 когда оно кончается либо двумя нулями либо двузначным числом что кратно 4. Это может быть либо 52 либо 56. (б=2 или б=6)
Число делится на 9, когда делится на 9 сумма его цифр.
Предположим ,что б=2 , тогда сумма цифр:
a+9+7+5+2=a+23=a+18+5 → a+5 делится на 9.
Таким образом единственное возможное a=4
Число: 49752
Предположим , что б=6 ,тогда сумма цифр:
a+9+7+5+6=a+27 → a делится на 9 → a=9
Число: 99756
Тебе нормас?
Объяснение: