1) числитель: выносим общий множитель за скобки и получаем 5( 3-у)
знаменатель: раскладываем по формуле разности квадратов и получаем (3-у)(3+у)
(3-у) сокращаем и остается 5 разделить на 3+у
2) числитель: сворачиваем по формуле квадрат разности и получаем (m-2n)(m-2n)
знаменатель: раскладываем по формуле разности квадратов и получаем ( m-2n)(m+2n)
(m-2n) сокращаем и остается m-2n разделить на m+2n
1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)


Это функция общего вида
2)


Это функция общего вида
3)


Это функция общего вида
3.
1)

Значит
![min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3](/tpl/images/1407/6823/69e2d.png)
2)

Значит
![min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3](/tpl/images/1407/6823/5cc0f.png)
4.

Это биквадратное уравнение. Делаем подстановку

Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

Делаем проверку:
1) а=-1

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3

Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
а) х1=1; х2= 1-√5; х3=1+√5
б) х1= -1; х2=4; х3= -2; х4=5
Объяснение:
а) (х²-2х)²-3х²+6х-4=0
(х(х-2))²-3х(х-2)-4=0 | пусть х(х-2)=а, тогда:
а²-3а-4=0
Д=9-4×(-4)=9+16=25
а1=(3-5)/2= -2/2= -1
а2=(3+5)/2=8/2=4
Подставим каждое значение а в уравнение: х(х-2):
х(х-2)= -1
х²-2х+1=0
(х-1)²=0
х-1=0
х=1; х1=1
х(х-2)=4
х²-2х-4=0
Д=4-4×(-4)=4+16=20
х1=(2-√20/2= (2-2√5)/2=2(1-√5)/2=1–√5; х1=1–√5
х2=(2+√20)/2=(2+2√5)/2=2(1+√5)/2=1+√5; х2=1+√5
б) (х²-3х)²-14х²+42х+40=0
(х(х-3))²-14х(х-3)+40=0 | пусть х(х-3)=а, тогда:
а²-14а+40=0
Д=14²-4×40=196-160=36
а1=(14-6)/2=8/2=4
а2=(14+6)/2=20/2=10
Теперь подставим каждое значение а в уравнение:
х(х-3)=4
х²-3х=4
х²-3х-4=0
Д=3²-4×(-4)=9+16=25
х1=(3-5)/2= -2/2= -1
х2=(3+5)/2=8/2=4
х(х-3)=10
х²-3х-10=0
Д=3²-4×(-10)=9+40=49
х1=(3-7)/2= -4/2= -2
х2=(3+7)/2=10/2=5
Обозначим в задании б) 2- ю пару х, чтобы не запутаться х3, х4. Я их в ответе обозначила так, поскольку мы нашли во втором уравнении 2 пары х, т.е. 4 значения х
5(3-y)/(3-y)(3+y)
(3-y) взаимоуничтожается
отстается: 5/3+y