Объяснение:
1.Представьте в виде степени выражение
А) х5∙х12∙х3 x5x12x3=x5+12+3=x20
Б) y13: y9 y13/y9=y13-9=y4 ( за задание )
2.Представьте в виде произведения степеней степени.
А) (ax)7 a7=x7
Б) (nm) 15n15=m15
( за задание )
3)Упростите выражение
А) 2 а-2 ∙3а4 2a-2*3a=2a (1-3a2)=46-3=4a9
Б) 24 а6: (6а-3)
( за задание )
4) Представьте в стандартном виде число.
А) 13000000000 13*10/9
Б) 0,000000015 15*10-9
( за задание )
5) Приведите в стандартный вид одночлены.
А) 5а2 ∙(-3) а3 в4 5a/2(-3)a/3b4-15=5b4
Б) 8ас5 ∙(-2а4) 8ac5*-2a4*16a5c5
( за задание )
#1. |2x-3|=3-2x, если х<3/2; |2x-3|=2x-3, если х≥3/2;
|x-2|=2-x, если х<2; |x-2|=-2x, если х≥2;
|x-6|=6-x, если х<6; |x-6|=x-6, если х≥6.
Получаем три случая:
1) на множестве (-∞;3/2)U[2;6) получаем неравенство
(2х-3)(х-2)≥(6-х)+2
2х²-3х-4х+6-6+х-2≥0
2х²-6х-2≥0
х²-3х-1≥0
D=9+4=13
C учётом (-∞;3/2)U[2;6) получим![x \in (-\infty; \frac{3-\sqrt{13}}{2}]](/tpl/images/0172/7524/fc8b3.png)
2) на интервале 1,5≤х<2 получим неравенство
(2х-3)(2-х)≥(6-х)+2
4х-6-2х²+3х-6+х-2≥0
-2х²+8х-14≥0
х²-4х+7≤0
D=16-28<0
решений нет
3) на интервале х≥6 получим неравенство
(2х-3)(х-2)≥(х-6)+2
2х²-3х-4х+6+6-х-2≥0
2х²-8х+10≥0
х²-4х+5≥0
D=16-20<0
решений нет
ответ:![x \in (-\infty; \frac{3-\sqrt{13}}{2}]](/tpl/images/0172/7524/fc8b3.png)
#2. Пусть ∆АВС-прямоугольный треугольник с гипотенузой АВ, катетами АС и ВС.
По условию ВС+АВ=11, tg В = 3/4.
По определению тангенса острого угла прямоугольного треугольника
tg B=AC/BC=3/4 => 3BC=4AC =>
По теореме Пифагора АВ² = АС² + ВС²
Пусть ВС=х, тогда АВ=11-х, АС=3х/4
ответ: