Положим в банк 8 рублей
Через год сумма на счету увеличится ровно в p раз и станет равной (8p) рублей.
Поделим её на 4 части, заберем (2p) рублей, оставим в банке (6p) рублей.
Известно, что к концу следующего года в банке оказалось 8·1,44 = 11,52 рубля.
k=11,52/6p=1,92/p
Нашли второй повышающий коэффициент k банка.
p*k=p*1,92/p=1,92
Из условия следует, что второй коэффициент на 0,4 больше первого.
p*(p+0,4)=1,92
P2+0,4p-1,92=0
D=0,16+7,68=7,84
P1=(-0,4-2,8)/2=-1,6 не удов усл
P2=(-0,4+2,8)/2=1,2
k=1,2+0,4=1,6
В 1,2 раза увеличилась сумма вклада первый раз, в 1,6 раз - во второй раз.
Было 100%, стало 160%. Новый процент годовых равен 160%-100% = 60%.
ответ: 60%
D=36-44=-8
так как дискриминат меньше 0, то график этого трехчлена - парабола, не пересекает ось ох, и так как коэффицент перед x^2 положительный, то вся парабола будет распологатся выше оси ox, и следовательно принимать только неотрицательные значения.
2)-x^2+6x-11=0
D=36-4*(-11)*(-1)=36-44=-8
здесь также дискриминат меньше 0, но коэффицент перед x^2 отрицательный, поэтому парабола будет располагаться ниже оси ox и следовательно принимать только отрицательные значения
(В приложении графики парабол, для наглядности. красным цветом - 1 парабола, синим - 2 )