Возьмем за S весь объем задания, а за х и у - скорость первого и второго штукатура соответственно тогда первый может выполнить задание за S/x часов, а второй за S/y. S/x +5=S/y S/(x+y)=6 надо найти S/x и S/y
S/y-S/x=5 S=6x+6y S/x =6+6y/x S/y=6+6x/y 6+6y/x-6-6x/y=5 обозначим y/x=z 6z-6/z=5 6z²-6=5z 6z²-5z-6=0 D=5²+4*6*6=169 √D=13 z₁=(5-13)/12=-8/12=-2/3 отбрасываем, так как z не может быть отрицательным z₂=(5+13)/12=-18/12=3/2=1,5 S/x =6+6y/x=6+6z=6+6*1,5=6+9=15 S/y=6+6x/y=6+6/z=6+6/1,5=6+4=10 ответ: 15 и 10 часов
1. Доказать тождество
sinα +sin5α+sin7α +sin11α = 4cos2α*cos3α*sin6α
sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =
2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=
2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α
- - - - - - -
2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3
- - -
Cначала упростим выражение:
sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =
sinα(2cos5α*cos∝ - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =
sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=
= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) = || sinα =-1/√3 ||
= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² ) = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27